
Natural
Web Interface

Version 5.1.1 for Windows
Version 3.1.6 for Mainframes
Version 5.1.1 for UNIX and OpenVMS

This document applies to Natural Version 5.1.1 for Windows, Version 3.1.6 for Mainframes, Version 5.1.1 for
UNIX and OpenVMS, and to all subsequent releases. Specifications contained herein are subject to change and
these changes will be reported in subsequent release notes or new editions.

© June 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents
.................. 1Natural Web Interface
.................. 1Natural Web Interface
.............. 2Introducing the Natural Web Interface
............... 2Introducing the Natural Web Interface
............... 3What is the Natural Web Interface
.................... 3Architecture
........... 3Communication Using Natural RPC Techniques
............. 3Communication Using DCOM Techniques
................ 4Natural Web Interface Modules
..................... 4Features
........... 4Calling Natural Subprograms from a Web Page
........... 5Feedback to the User with a Formatted Web Page
.................. 5Proven Middleware
.................. 5Web Page Creation
.................... 6Functionality
..................... 6Security
................ 8Natural Web Interface Essentials
................ 8Natural Web Interface Essentials
.............. 9Working with the Natural Web Interface
.............. 9Working with the Natural Web Interface
................ 9Setting up your Environment
............ 9Prerequisites on the Web Environment Side
................ 9Middleware Prerequisites
.............. 9Prerequisites on Natural Server Side
............... 9Building Subprograms in Natural
.............. 10Before You Write Your Subprograms
.............. 11Ways to Create Your Subprograms
............. 19General Programming Considerations
............ 21Changing the Amount of Data Transferred
................. 21Testing Subprograms
.............. 22The Natural Web Server Extensions
................... 22Data Areas
............ 23Naming Conventions of the Library SYSWEB
.............. 24Conversion Program: HTML to Natural
.............. 24Conversion Program: HTML to Natural
................ 24Using the Conversion Program
..................... 25Menu
.................... 26Toolbar
...... 26Generating a Subprogram/Subroutine to be called direct from the Web
................. 26Inserting a Natural Tag
............ 27Attributes DATA, LDA, GDA, SUB, NOT
................... 27Comment Tag
................ 27ASP-like Script Commands
................ 27Additional Script Directives
.............. 28Example 1 of a Simple Generation
.......... 29Example 2 of a Simple Generation with a Natural Tag
..................... 31Options
.................. 32Input/Output Fields
..................... 33View
.................. 33Input/Output Fields
.................... 34Buttons
................. 34Generating a DCOM Class
................. 34Invoking Generate Class

iCopyright © Software AG 2002

Table of ContentsNatural Web Interface

................... 35Input/Output Fields

................ 35Example for Library SYSWEB

...................... 36Buttons

................. 36Online Test Utility WEB-ONL

..................... 36Prerequisites

.................. 36Running the Application

.................. 37Supported Content Types

...................... 38Menu

................... 39Input/Output Fields

...................... 39Buttons

..................... 40Programming Tips

.................... 40Programming Tips

................... 40Editing in Lower Case

................... 40Quote v. Apostrophe

.................. 40Variables defined by Value

................... 41Access to Resources

.................... 41Constant Values

................... 41Creating a New Page

..................... 42DCOM / RPC

.................. 43Web Interface Administration

.................. 43Web Interface Administration

............. 43Set the Size of the Return-Page Transport Buffer

.............. 43Changing the Transport Send Buffer Width

.............. 43Changing the Received Data Buffer Width

................. 43Changing Your Return Page

................. 44Set the Size of the Return Page

................ 44Create a User-Defined Error Page

.............. 44Create a User-Defined Error Page XML-Style

................ 44Alphanumeric-to-HTML Conversion

................ 46Alphanumeric-to-URL Conversion

.............. 47Demonstration Application - without JavaScript

.............. 47Demonstration Application - without JavaScript

................... 47Business Requirements

.................... 49Design Decisions

.............. 49Libraries, Modules and Naming Conventions

............... 49Starting the Demonstration Application

............. 50Starting the Natural Web Interface Online Manual

..................... 50Requirements

.............. 51Demonstration Application - with JavaScript

............... 51Demonstration Application - with JavaScript

................... 51Business Requirements

.................... 53Design Decisions

............... 53Starting the Demonstration Application

..................... 53Requirements

................ 54Natural Web Interface Error Messages

................ 54Natural Web Interface Error Messages

..................... 54Error Messages

................. 55Natural Web Interface Installation

................. 55Natural Web Interface Installation

................ 56Configuring the Natural Web Interface

................ 56Configuring the Natural Web Interface

.................. 56Supported HTTP Servers

................ 56Configuring RPC and RPC Server
Natural Version 3.1.5 for Mainframes / Natural Version 4.1.2 for UNIX Server / Natural Version 5.1.1

..................... 56for Windows

................ 57EntireX / ENTIRE Broker SDK

Copyright © Software AG 2002ii

Natural Web InterfaceTable of Contents

................. 57Configuring the DCOM Server

...................... 57DCOM

.................... 58NaturalX Server

................. 58Configuring the Web Interface

.................. 58Natural Web Interface

.............. 58Natural Web Server Extensions for RPC

.............. 58Natural Web Server Extensions for DCOM

.............. 59Natural Web Server Extensions for NSAPI

.................. 60Configuring an HTTP Server

............... 60Communication with Natural Security

.................. 60HTTP Server Security:

.................... 60EntireX Security:

.................... 60Natural Security:

.................. 61Web Interface Troubleshooting

.................. 61Web Interface Troubleshooting

............... 63Natural Web Interface Programming Guide

............... 63Natural Web Interface Programming Guide

.................... 63Example Programs

................... 64Web Interface Specification

.................. 64Web Interface Specification

.................. 64Demonstration Application

..................... 64Main Menu

...................... 64Listing

...................... 65Browse

....................... 65Select

....................... 65New

....................... 65Show

...................... 65Change

...................... 65Delete

...................... 65Layout

.................. 67Web Interface HTML Design

.................. 67Web Interface HTML Design

................ 67The Given Layout as HTML Table

................. 68HTML Source of the Table

..................... 69Restrictions

...................... 69Colors

............... 70HTML 4.0 and Cascading Style Sheets

.................... 70Fixed Table Size

..................... 71Chosen Layout

..................... 71Input Layout

.................... 76Functional Parts

.................... 76How to Use Frames

................... 76How to Use JavaScript

.................. 77Web Interface Program Design

.................. 77Web Interface Program Design

...................... 77Data Input

..................... 77Global Data

..................... 771. Cookies

........... 782. Hidden Input Fields and Additional URL Parameters

............. 783. Data Saved on the Server Side (in a Database)

...................... 78Dispatch

..................... 79External Data

..................... 80Modular Pages

................... 81Chosen Program Design

.................... 81Functional Parts

iiiCopyright © Software AG 2002

Table of ContentsNatural Web Interface

.................. 84Web Interface Implementation

.................. 84Web Interface Implementation

.................... 84HTML to Natural

................... 84Reuse of Global Parts

................. 84Use of w3text versus w3html

.............. 84Increased Performance using w3text/w3html

................... 85Web Interface Fine Tuning

................... 85Web Interface Fine Tuning

.................... 85Entrance Tunnel

............... 88Natural Web Server Extensions - Overview

............... 88Natural Web Server Extensions - Overview

.............. 89Natural Web Server Extensions - Introduction

.............. 89Natural Web Server Extensions - Introduction

................... 89General Information

.................. 89Installation - RPC / DCOM

.................... 90Transformations

...................... 90Variables

.................. 90Error Logging and Messages

.................... 90Calling Programs

............. 92Natural Web Server Extensions - Initialization File

............. 92Natural Web Server Extensions - Initialization File

................... 92General Information

.................... 92RPC Parameters

.................... 93DCOM Parameters

............... 93Natural Web Server Extension Settings

................... 96HTTP Server Variables

................... 96Additional Variables

.................... 97Error Templates

................... 97Default Error Report

............... 98Specifying your own Error Template

................. 99Example of an Error Template

............. 100Natural Web Server Extensions - Error Messages

.............. 100Natural Web Server Extensions - Error Messages

Copyright © Software AG 2002iv

Natural Web InterfaceTable of Contents

Natural Web Interface
The Natural Web Interface is a link between a Web Server (more precisely: HTTP server) and your Natural
environment.

The Natural Web Interface documentation comprises the following documents:

Introducing the Natural Web Interface

Natural Web Interface Installation

Natural Web Interface Essentials

Natural Web Interface Programming Guide

Natural Web Interface Configuration

1Copyright © Software AG 2002

Natural Web InterfaceNatural Web Interface

Introducing the Natural Web Interface
More and more organizations need to offer information or services via the Internet. Gone are the days where
static HTML pages were sufficient for the daily visitors to a web page. Today, increasingly sophisticated HTML
pages are competing in the web, and the demand for full access to business logic via the Internet is increasing
tremendously. The database management systems containing business-critical information are mostly based on
heavy-duty servers like mainframes.

This section covers the following topics:

What is the Natural Web Interface
Architecture
Natural Web Interface Modules
Features
Functionality
Security

Copyright © Software AG 20022

Introducing the Natural Web InterfaceIntroducing the Natural Web Interface

What is the Natural Web Interface
The Natural Web Interface is a link between a Web Server (more precisely: HTTP server) and your Natural
environment. This can be on a separate server machine (such as a mainframe) or on the same machine as the
HTTP server (e.g. Netscape’s Communication Server or Microsoft’s IIS).

Contents of web pages can easily be created dynamically by a Natural program. This is a basis for implementing
a real interactive application on the web.

An interactive application enables users to input information and react by issuing output depending on that input.
Examples of Web-based applications are order entry systems, travel booking services and parcel tracking
systems.This considerably increases the scope of Natural applications. Not just in-house users, but also potential
customers all over the world can now use the same application.

And best of all: to implement such an application, Natural users do not have to learn a new programming
language. Navigation and user input/output are implemented fully in Natural (with some additional embedded
HTML statements).

Architecture

Communication Using Natural RPC Techniques

 Browser

tcp/ip

HTTP Server

Interface

Natural Web Interface

EntireX Broker RPC

ENTIRE NET-WORK or tcp/ip

EntireX Broker

ENTIRE NET-WORK or tcp/ip

Natural RPC

Natural Security

Natural Web Interface

Natural

Communication Using DCOM Techniques

3Copyright © Software AG 2002

What is the Natural Web InterfaceIntroducing the Natural Web Interface

 Browser

tcp/ip

HTTP Server

Interface

Natural Web Server Extension

DCOM

NaturalX

Natural Security

Natural Web Interface

Natural

Natural Web Interface Modules
The Natural Web Interface comprises three internal modules:

1. Natural Web Interface - the HTML API and the HTTP API of Natural
2. Natural Web Server Extensions - the part which provides the interface to the web server on the same

machine
3. Necessary middleware: EntireX or Entire Broker using RPC or DCOM technology

Features

Calling Natural Subprograms from a Web Page

One of the main features of the Natural Web Interface is that Natural subprograms can be called from a web
page. This can be done using forms on a web page that contains input fields and buttons. Users can enter data
and submit these data by clicking one of the buttons. This executes a Natural subprogram which passes the user
data as parameters.

This allows easy access to application functions (= subprograms). Simple database access for retrieving data
using SQL (and an ODBC driver) as offered by most Web Servers is not enough for implementing a interactive
application. You also need business logic to ensure data consistency and processing of the user data.

Business logic such as consistency and plausibility checks usually already exist, as they were implemented for
operational applications in the past. If they were implemented as separate Natural modules (such as
subprograms, programs, or subroutines) they can easily be re-used and do not have to be re-implemented in a
different environment or different language.

Therefore, no special interface program has to be written to connect the web server with the business functions.
The Natural Web Interface is a standardized interface for that purpose.

No programming language has to be learned and existing skills can be leveraged (except for HTML statements
to format the output pages).

Copyright © Software AG 20024

Introducing the Natural Web InterfaceNatural Web Interface Modules

Feedback to the User with a Formatted Web Page

The second important part of an interactive application on the web is the feedback to the user with formatted web
pages. With Natural Web Interface these web pages can be formatted dynamically according to the application’s
needs.

A benefit is that the control of layout and contents of these pages is fully at the application/program level, not
outside in separate directories.

And also: as Natural can gather data and information from a wide variety of sources (Adabas, RDBMSs, VSAM,
sequential files, even system information with Natural Process) the type of application is virtually unlimited -
any application you can build with Natural you can integrate with the web).

Proven Middleware

The Natural Web Interface is based on the proven set of middleware products from Software AG: the Entire
product family.

This allows seamless integration in an existing client/server environment. The web connection is just another
client, which can be connected to existing Natural servers. If Entire Net-Work is installed, you do not need to
install another set of middleware products.

Since Natural for Windows and UNIX/OpenVMS Version 4.1, the interface can call Natural DCOM classes. The
methods called, with a specific interface, can map to the same subroutines used through remote procedure call
(RPC).

Web Page Creation

Web pages can be created with standard tools (e.g. FrontPage) or with the web page creation tool using the
Natural generation functionality. From the Natural server, subprograms can be generated. There’s no need to
acknowledge any other programming language or web-page creation tool.

5Copyright © Software AG 2002

Feedback to the User with a Formatted Web PageIntroducing the Natural Web Interface

Functionality
Requests from a web page in the user’s browser are passed to the web (or HTTP) server. Provided that this was a
form requesting execution of a Natural subprogram, this request is then passed to the Natural Web Server
Extensions part which executes the Natural subprogram via EntireX RPC or DCOM. The program takes any user
data as parameters and then issues a set of programs to provide the feedback to the user.

The following diagram illustrates how the Natural subrograms are called from an HTML browser. Each stage of
the process is identified by a number; what happens at these stages is explained below.

Browser
HTTP
Server

Natural
Web

Server
Extensions

Nqtural
and

Natural
Web

Interface

http://...

internet request

(1)
check url

(user, passwort)
call interface

cgi/isapi/nsapi

(2)
collect input

data
decode

prepare call

DCOM/RPC

(3) (4)
subprogram

define data
...
perform w3...
...
end

<HTML> ...
</HTML>

or excel:

name11,name21,...
name21,name22,

(7) add header
information

(6)
replace:
special

character,
line breakes

(5)

1. HTML Browser Requests URL.
Your browser requests a URL identifying the program you want to call on the server side.

2. Web Server calls the Natural Web Server Extension CGI.
The web server takes the URL and calls Natural Web Server Extensions.

3. Natural Web Server Extension converts the call to RPC.
The Natural Web Server Extension program "translates" the URL into a Natural RPC that invokes the
Natural server program originally identified by the URL.

4. Natural subprogram is executed and generates a return page.
The Natural subprogram on the server is executed and generates an HTML return page.

5. Return Page is sent back to the Natural Web Server Extension.
The HTML return page is sent back as response of the subroutine call.

6. Natural Web Server Extension sends back the return page to the Web Server.
The Web Server adds header information and sends it to the browser.

7. The browser receives the answer to what it was sent out as a request for an URL.

Note:
In the context of the Natural Web Interface, only external subroutines can return output.

Security
Pages called via Natural Web Interface can work together with Natural Security. This is accomplished as
follows:

First your Natural Web Server Extension has to be defined as restricted page at your HTTP server.
If this is done, you will be prompted for user ID and password by your browser if you request an Adapter
page.
The HTTP server will now verify the given data with its database.
If the user is authorized, Natural Web Server Extension is called with the remote user’s name.
If the Natural RPC server is started with Natural Security, the given name will be set as *USER.
As an authentification is already done by the HTTP server, no password checking will be done on the
Natural side. Therefore, the Natural RPC server has to be started with AUTO=ON.

Copyright © Software AG 20026

Introducing the Natural Web InterfaceFunctionality

A second scenario is that, at the initialization file, a specific, fixed, defined user ID and password is set to
communicate with a Natural RPC server with Natural Security. See also Communication with Natural Security

7Copyright © Software AG 2002

SecurityIntroducing the Natural Web Interface

Natural Web Interface Essentials
This part of the Natural Web Interface documentation describes how the Natural Web Interface enables you to
create web-enabled Natural subprograms and how a web browser can call these subprograms and can receive a
page in return.

This part of the documentation also outlines those functions of the Software AG product EntireX which are
relevant to the operation of the Natural Web Interface. For more information, see the EntireX documentation.

You should know the essentials of HTML, of web browsers and of the environments in which the web browsers
operate. You should also have a sound knowledge of Natural in a client-server environment.

This part of the Natural Web Interface documention contains the following sections:

Working with the Natural
Web Interface

Describes how to set up the environment and how to work with
subprograms.

Natural Web Server
Extensions

Describes how the Natural Web Interface enables you to create
web-enabled Natural subprograms and how a web browser can call
these subprograms and can receive a page in return.

Conversion Program
HTML to Natural

Describes how to use the HTML to Natural conversion programs.

Tips on Programming Contains tips for the usage of the Natural Web Interface to enable you
to build better web programs.

Administration Describes how to set formats, how to define error pages, how to
convert to HTML and to decode an URL.

Demonstration
Application without
JavaScript

Contains a demonstration application which shows the use and
programming of the Natural Web Interface.

Demonstration
Application with
JavaScript

Contains a more comprehensive demonstration application. This
demonstration application requires a browser which supports Java.

Natural Web Interface
Error Messages

Contains a list of error messages you may receive when you are
working with the Natural Web Interface.

The Natural library SYSWEB contains all modules of the Natural Web Interface.

Copyright © Software AG 20028

Natural Web Interface EssentialsNatural Web Interface Essentials

Working with the Natural Web Interface
This section covers the following topics:

Setting up your Environment
Building Subprograms in Natural

Setting up your Environment

Prerequisites on the Web Environment Side

The following software must be installed:

On the web
client:

Browser software, such as Netscape Navigator or Microsoft Internet Explorer.

On the web
server:

HTTP server software, such as Netscape Fast Track Server, Microsoft Internet Information
Server or Apache Server.

Middleware Prerequisites

Different prerequisites must be met if communication is to be used by RPC or DCOM:

RPC
The broker of the Software AG product EntireX must be installed (for installation information, see
EntireX documentation).

DCOM
On non-Windows platforms, DCOM is not a part of the operating system. The Software AG product
EntireX contains a DCOM implementation for several platforms and must be installed (for installation
information, see EntireX documentation).

The Natural Web Server Extensions part is needed for communication between a web browser and a Natural
DCOM/RPC server.

Prerequisites on Natural Server Side

The following prerequisites must be met:

Natural Version 2.3.1/3.1.1 (Mainframe), 4.1.1 (UNIX / NT) or above must be installed.
The library SYSWEB (the Natural Web Interface’s server programs and server-program online
documentation).
Either Natural steplibs must be available or the contents of the library SYSWEB must be copied to the
library SYSTEM or to the user library that will be called by the RPC.
The global data area W3CONTEX.
The parameter data Area W3PARM.
The Natural RPC stub or NaturalX.

Building Subprograms in Natural
The following diagram illustrates how you can build a subprogram:

9Copyright © Software AG 2002

Working with the Natural Web InterfaceWorking with the Natural Web Interface

1. Using a HTML editor
2. You use a HTML editor to enter HTML and Natural code
3. Then convert it to Natural source.
4. Finally move the generated program to Natural. (You code directly in Natural.)

Each stage of the process is identified by a number; what happens at these stages is explained below.

HTML Editor

<HTML>...
<Natural>
...
</Natural>

Natural

GDA
W3CONTEX
PDA W3PARM

 (1b)

HTML to Natural

converts

Libaries
SYSWEB,
SYSEXT

 (2) (1a)

Natural subprogram

DEFINE DATA
...
END-DEFINE
...
PERFORM
W3...

(3)
User Library

1. 1a. Natural Code is written and stored in User Library.
You write Natural code on the server side either by including HTML tags in the code or by calling
pre-fabricated subprograms that generate HTML tags. Then you store it as a server program or use the
subprogram WEB-WIZ to generate a default program.

1b. Natural Code is entered as HTML. Continue with 2.
You use an HTML editor to create HTML pages.

2. Program HTML2NAT generates Natural Sources out of HTML.
You start the program HTML2NAT out of the library SYSWEB and let it convert your HTML pages
created in step 1b.

3. Generated Natural Source is moved to the User Library.
You move the generated Natural sources to your server environment by using the Natural SYSUNLD
function.

Before You Write Your Subprograms

Keep the following things in mind:

The returning HTML page is limited to the maximum data that can be transmitted. This maximum is
determined by the return page variable.
You must initialize and end the access to the Natural server subroutines by calling the subroutines W3INIT
and W3END in the library SYSWEB.
Always use the parameter data areas W3PARM and W3CONST.
Use the subprogram WEB-WIZ to generate a frame (default program) for your own program.

Copyright © Software AG 200210

Working with the Natural Web InterfaceBefore You Write Your Subprograms

Ways to Create Your Subprograms

There are two basic alternatives:

1. Coding in Natural direct
2. Using an HTML editor.

1. Coding In Natural Direct

There are two alternatives:

Entering calls to SYSWEB subroutines (such as W3HTML or W3TEXT) for your return page in the
program editor (see the programs in the library SYSWEB, which help you perform only basic system
functions; this approach requires a good knowledge of the data type you are creating, for example HTML or
XML); or
calling subprograms that generate HTML tags (see the library SYSWEB; the programs in the library
SYSWEB enable you to perform basic system functions and in addition, the programs in the library
SYSWEB generate HTML tags; this approach requires less explicit HTML knowledge and you can still
modify the programs you are calling).

11Copyright © Software AG 2002

Ways to Create Your SubprogramsWorking with the Natural Web Interface

Example: Entering Calls to SYSWEB Subroutines in the Program Editor

 *
 * Example E3END
 *
 DEFINE DATA
 PARAMETER USING W3PARM
 LOCAL USING W3CONST
 LOCAL
 1 W3VALUE (A250)
 END-DEFINE
 * --- ERROR HANDLING ---
 ON ERROR
 PERFORM W3ERROR ##W3ERROR
 PERFORM W3END ##RPC
 ESCAPE ROUTINE
 END-ERROR
 *
 * --- INITIALIZE W3 PROCESSING ---
 PERFORM W3INIT ##RPC
 *
 * --- SET TYPE OF RETURN-PAGE ---
 PERFORM W3CONTENT-TYPE ’text/html’
 * --- WRITE THE DOCUMENT ---
 PERFORM W3TEXT ’<HTML><BODY><H2>Initialize</H2>’
 *
 * --- END THE HTML PAGE ---
 COMPRESS ’<HR>generated:’ *DATE *TIME ##HTTP_NEWLINE
 ’</BODY></HTML>’ ##HTTP_END INTO W3VALUE
 PERFORM W3TEXT W3VALUE
 *
 * --- END W3 PROCESSING ---
 PERFORM W3END ##RPC
 *
 END

Example: Calling Subprograms that Generate HTML Tags

 *
 * Example E3IMAGE
 *
 DEFINE DATA
 PARAMETER USING W3PARM
 LOCAL USING W3CONST
 LOCAL
 1 H3VALUE (A250)
 1 H3VALUE-MAX (I004)
 1 H3URL (A250)
 *
 1 II (I001)
 1 GIF (A064)
 END-DEFINE
 * --- ERROR HANDLING ---
 ON ERROR
 PERFORM W3ERROR ##W3ERROR
 PERFORM W3END ##RPC
 ESCAPE ROUTINE
 END-ERROR
 *
 * --- INITIALIZE W3 PROCESSING ---
 PERFORM W3INIT ##RPC
 *

Copyright © Software AG 200212

Working with the Natural Web InterfaceWays to Create Your Subprograms

 * --- Pathname of picture ---
 PERFORM W3READ-ENVIRONMENT "PICTURES" ’ ’ H3VALUE H3VALUE-MAX
 IF H3VALUE-MAX EQ 0 THEN
 GIF := "/pictures"
 ELSE
 GIF := H3VALUE
 END-IF
 *
 * --- START HTML API ---
 PERFORM H3-OPEN-HTML ’HTML Api -Image’ " " " "
 * --- THE LEVEL 2 HEADER ---
 PERFORM H3-HEADER 2 ’Image’
 *
 PERFORM H3-RULE 0
 *
 PERFORM H3-HEADER 4 ’left:’
 *
 COMPRESS GIF ’/natw_sam.gif’ INTO H3URL LEAVING NO
 PERFORM H3-IMAGE H3URL ’NATweb left’ 219 229 "L"
 *
 FOR II 1 TO 10
 PERFORM H3-LINE-BREAK
 END-FOR
 PERFORM H3-RULE 80
 *
 PERFORM H3-HEADER 4 ’small right:’
 *
 COMPRESS GIF ’/natw_sam.gif’ INTO H3URL LEAVING NO
 PERFORM H3-IMAGE H3URL ’NATweb small right’ 100 100 ’R’
 *
 FOR II 1 TO 5
 PERFORM H3-LINE-BREAK
 END-FOR
 *
 PERFORM H3-RULE 0
 *
 PERFORM H3-TIME_DATE
 *
 * --- END HTML API ---
 PERFORM H3-CLOSE-HTML
 * --- END W3 PROCESSING ---
 PERFORM W3END ##RPC
 *
 END

2. Using an HTML Editor

There are two alternatives:

Creating static pages (you only enter HTML, which will be converted to a Natural subprogram)
Creating dynamic pages (you enter HTML plus Natural program code).

You can, of course, also create pages that are partly dynamic, partly static.

Example: Creating Static Pages

13Copyright © Software AG 2002

Ways to Create Your SubprogramsWorking with the Natural Web Interface

 <HTML>
 <TITLE>NATweb - Test</TITLE>
 <BODY bgColor=d3d3d3 >

 <center>
 <h2>
 This Natural subprogram was generated by a HTML page.
 </h2>
 </CENTER>
 </BODY></HTML>

Copyright © Software AG 200214

Working with the Natural Web InterfaceWays to Create Your Subprograms

This Natural subprogram will be generated from the above HTML page:

 * ----- SUBPROGRAM generated out of file:
 * ----- C:\static.htm
 DEFINE DATA
 PARAMETER USING W3PARM
 LOCAL USING W3CONST
 LOCAL
 * ----- PRIVATE VARIABLES -----
 1 W3VALUE (A250)
 END-DEFINE
 *
 * ----- ERROR HANDLER -----
 ON ERROR
 PERFORM W3ERROR ##W3ERROR
 PERFORM W3END ##RPC
 ESCAPE ROUTINE
 END-ERROR
 * ----- INITIALISE HTTP API -----
 PERFORM W3INIT ##RPC
 * ----- HEADER FOR SERVER -----
 PERFORM W3CONTENT-TYPE ’text/html’
 *
 PERFORM W3TEXTLINE ’<HTML>’
 PERFORM W3TEXTLINE ’<TITLE>NATweb - Test</TITLE>’
 PERFORM W3TEXTLINE ’<BODY bgColor=d3d3d3 >’
 PERFORM W3TEXTLINE ’
’
 PERFORM W3TEXTLINE ’<center>’
 PERFORM W3TEXTLINE ’<h2>’
 PERFORM W3TEXTLINE ’This Natural subprogram was generated by a HTML page.’
 PERFORM W3TEXTLINE ’</h2>’
 PERFORM W3TEXTLINE ’</CENTER>’
 PERFORM W3TEXTLINE ’</BODY></HTML>’
 * ----- END HTTP API -----
 PERFORM W3END ##RPC
 * ----- END MAIN PROGRAM -----
 *
 * ----- SUBROUTINES -----
 *
 END

Example: Creating Dynamic Pages

 <Natural><!--
 *
 * Read form Pers-View starting with value given by the
 * Parameter START
 *
 * Use HTML2NAT to generate a Natural Program
 *
 * 11.03.02
 *
 --></Natural>
 <! --- Variables to read the environment --->
 <Natural data><!--
 * ----- DATA -----
 1 H3VALUE (A250)
 1 H3MAX (I4)
 --></Natural>
 <! --- Head of the HTML page --->
 <HTML>
 <TITLE>Natural - Environment Test</TITLE>

15Copyright © Software AG 2002

Ways to Create Your SubprogramsWorking with the Natural Web Interface

 <BODY bgColor=d3d3d3 >

 <center>
 <h2>
 This Natural subprogram was generated by a HTML page. The program had been
 precompiled out of a HTML page.

 </h2>
 </center>

 <hr>
 <! --- Subprogram to write the output to work file,
 from where the server will read it --- >
 <Natural DATA><!--
 1 #CONTENT (A1/1:48)
 1 REDEFINE #CONTENT
 2 #PERSONNEL-NUMBER (N8)
 2 FILLER 1X
 2 #NAME (A20)
 2 FILLER 1X
 2 #FIRST-NAME (A15)
 2 FILLER 1X
 2 #AGE (N2)
 --></Natural>
 <Natural SUB><!--
 * ----- Do the OUTPUT -----
 DEFINE SUBROUTINE WRITELINE
 PERFORM W3TEXT ""
 *
 #PERSONNEL-NUMBER:=PERSONNEL-NUMBER
 #NAME:=NAME
 #FIRST-NAME:=FIRST-NAME
 #AGE:=AGE
 PERFORM W3HTMLARRAY #CONTENT(*) 48
 *
 PERFORM H3-LINE-BREAK
 END-SUBROUTINE
 --></Natural>
 <PRE>
 <! --- Parameter used for reading data from the DATABASE --->
 <Natural DATA><!--
 * ----- DATA -----
 1 #VALUE (A20)
 1 PERS-VIEW VIEW OF PERSONNEL
 2 PERSONNEL-NUMBER
 2 NAME
 2 FIRST-NAME
 2 AGE
 --></Natural>
 <! --- Main program to read the data --->
 <Natural NOT>
 Value1
 Value2
 ...
 </Natural>
 <Natural><!--
 * --- READ ENVIRONMENT ---
 PERFORM W3READ-ENVIRONMENT ’START’ ’P’ H3VALUE H3MAX
 IF H3MAX GT 0 THEN
 #VALUE := H3VALUE
 ELSE
 #VALUE := "A"

Copyright © Software AG 200216

Working with the Natural Web InterfaceWays to Create Your Subprograms

 END-IF
 *
 * ----- MAIN -----
 F. FIND (100) PERS-VIEW NAME > #VALUE
 IF NO
 COMPRESS ’Sorry nothing found for:’ #value ’!’ INTO H3VALUE
 PERFORM W3HTMLLINE H3VALUE
 END-NOREC
 IF *NUMBER > 0
 PERFORM WRITELINE
 END-IF
 END-FIND
 *
 IF *NUMBER(F.) > 0
 PERFORM H3-RULE 0
 *
 COMPRESS ’well done for: ’ #value ’!’ ##HTTP_END INTO H3VALUE
 PERFORM W3HTMLLINE H3VALUE
 END-IF
 --></Natural>
 </PRE>
 <! --- The footer of the HTML page --- >
 <hr>

 <center>
 back to Index
 This program has been generated.
 <Natural><!--
 PERFORM H3-TIME_DATE
 --></Natural>
 </P>
 </CENTER>
 </BODY></HTML>

This Natural subprogram will be generated from the above HTML page:

 * ----- SUBPROGRAM generated out of file:
 * ----- C:\doit.htm
 DEFINE DATA
 PARAMETER USING W3PARM
 LOCAL USING W3CONST
 LOCAL
 * ----- DATA -----
 1 H3VALUE (A250)
 1 H3MAX (I4)
 1 #CONTENT (A1/1:48)
 1 REDEFINE #CONTENT
 2 #PERSONNEL-NUMBER (N8)
 2 FILLER 1X
 2 #NAME (A20)
 2 FILLER 1X
 2 #FIRST-NAME (A15)
 2 FILLER 1X
 2 #AGE (N2)
 * ----- DATA -----
 1 #VALUE (A20)
 1 PERS-VIEW VIEW OF PERSONNEL
 2 PERSONNEL-NUMBER
 2 NAME
 2 FIRST-NAME
 2 AGE
 * ----- PRIVATE VARIABLES -----

17Copyright © Software AG 2002

Ways to Create Your SubprogramsWorking with the Natural Web Interface

 1 W3VALUE (A250)
 END-DEFINE
 *
 * ----- ERROR HANDLER -----
 ON ERROR
 PERFORM W3ERROR ##W3ERROR
 PERFORM W3END ##RPC
 ESCAPE ROUTINE
 END-ERROR
 * ----- INITIALISE HTTP API -----
 PERFORM W3INIT ##RPC
 * ----- HEADER FOR SERVER -----
 PERFORM W3CONTENT-TYPE ’text/html’
 *
 * ----- MAIN PROGRAM -----
 *
 * Read form Pers-View starting with value given by the
 * Parameter START
 *
 * Use HTML2NAT to generate a Natural Program
 *
 * 11.03.2002
 *
 PERFORM W3TEXTLINE ’<! --- Variables to read the environment --->’
 PERFORM W3TEXTLINE ’<! --- Head of the HTML page --->’
 PERFORM W3TEXTLINE ’<HTML>’
 PERFORM W3TEXTLINE ’<TITLE>Natural - Environment Test</TITLE>’
 PERFORM W3TEXTLINE ’<BODY bgColor=d3d3d3 >’
 PERFORM W3TEXTLINE ’
’
 PERFORM W3TEXTLINE ’<center>’
 PERFORM W3TEXTLINE ’<h2>’
 PERFORM W3TEXTLINE ’This Natural subprogram was generated by a HTML page. Th’
 -’e program had been’
 PERFORM W3TEXTLINE ’precompiled out of a HTML page.’
 PERFORM W3TEXTLINE ’

’
 PERFORM W3TEXTLINE ’</h2>’
 PERFORM W3TEXTLINE ’</center>’
 PERFORM W3TEXTLINE ’
’
 PERFORM W3TEXTLINE ’<hr>’
 PERFORM W3TEXTLINE ’<! --- Subprogram to write the output to work file’
 PERFORM W3TEXTLINE ’ from where the server will read it --- >’
 PERFORM W3TEXTLINE ’<PRE>’
 PERFORM W3TEXTLINE ’<! --- Parameter used for reading data from the’
 -’ DATABASE --->’
 PERFORM W3TEXTLINE ’<! --- Main Program to read the data --->’
 * --- READ ENVIRONMENT ---
 PERFORM W3READ-ENVIRONMENT ’START’ ’P’ H3VALUE H3MAX
 IF H3MAX GT 0 THEN
 #VALUE := H3VALUE
 ELSE
 #VALUE := "A"
 END-IF
 *
 * ----- MAIN -----
 F. FIND (100) PERS-VIEW NAME > #VALUE
 IF NO
 COMPRESS ’Sorry nothing found for:’ #value ’!’ INTO H3VALUE
 PERFORM W3HTMLLINE H3VALUE
 END-NOREC
 IF *NUMBER > 0
 PERFORM WRITELINE
 END-IF

Copyright © Software AG 200218

Working with the Natural Web InterfaceWays to Create Your Subprograms

 END-FIND
 *
 IF *NUMBER(F.) > 0
 PERFORM H3-RULE 0
 *
 COMPRESS ’well done for: ’ #value ’!’ ##HTTP_END INTO H3VALUE
 PERFORM W3HTMLLINE H3VALUE
 END-IF
 PERFORM W3TEXTLINE ’</PRE>’
 PERFORM W3TEXTLINE ’<! --- The footer of the HTML page --- >’
 PERFORM W3TEXTLINE ’<hr>’
 PERFORM W3TEXTLINE ’
’
 PERFORM W3TEXTLINE ’<center>’
 PERFORM W3TEXTLINE ’back to Index’
 PERFORM W3HTMLLINE ’This program has been generated.’
 perform H3-TIME_DATE
 PERFORM W3TEXTLINE ’</P>’
 PERFORM W3TEXTLINE ’</CENTER>’
 PERFORM W3TEXTLINE ’</BODY></HTML>’
 * ----- END HTTP API -----
 PERFORM W3END ##RPC
 * ----- END MAIN PROGRAM -----
 *
 *
 * ----- SUBROUTINES -----
 * ----- Do the OUTPUT -----
 DEFINE SUBROUTINE WRITELINE
 PERFORM W3TEXT ""
 *
 #PERSONNEL-NUMBER:=PERSONNEL-NUMBER
 #NAME:=NAME
 #FIRST-NAME:=FIRST-NAME
 #AGE:=AGE
 PERFORM W3HTMLARRAY #CONTENT(*) 48
 *
 PERFORM H3-LINE-BREAK
 END-SUBROUTINE
 END

General Programming Considerations

Constant Values in the Local Data Area W3CONST

The local data area W3CONST contains a number of constant values which you might find useful:

##HTTP_NEWLINE, ##HTTP_NEWLINE_LENGTH and ##HTTP_NEWLINE_END

If you enter the ##HTTP_NEWLINE string into your HTML, you can use the subroutines W3TEXT and
W3TEXT-ARRAY in the library SYSWEB to create a physical new line by compressing #HTTP_NEWLINE
into the string. If you do not wish trailing blanks to be stripped, you can use ##HTTP_NEWLINE_END.
##HTTP_NEWLINE_LENGTH returns the length of the ##HTTP_NEWLINE string.
##HTTP_NEWLINE_END is always one character longer.

##HTTP_END

If you enter this string into your HTML, all routines which write their output to the return page will remove
trailing blanks. If you do not wish trailing blanks to be removed, compress a ##HTTP_END string at the
end of your string. There will be more output processing as a result.

19Copyright © Software AG 2002

General Programming ConsiderationsWorking with the Natural Web Interface

##W3ERROR

Parameter used for calling W3ERROR.

##HTML_LT

Constant HTML value for "less than" sign (<).

##HTML_GT

Constant HTML value for "greater than" sign (>).

##HTML_AMP

Constant HTML value for "ampersand" sign (&).

##HTML_QUOT

Constant HTML value for "double quote" sign (").

##HTML_REG

Constant HTML value for "Registered Trademark" sign.

##HTML_COPY

Constant HTML value for "copyright" sign.

##HTML_NBSP

Constant HTML value for "no page breaking" space (’ ’).

Variables Defined by Value

All input variables are defined BY VALUE, that is, every value which is MOVE compatible can be used,
especially strings.

Creating a Next Page

If your output possibly exceeds the limits of your return page, use the subroutine W3COUNTER in the
library SYSWEB to evaluate how many bytes are free in the return page.

Copyright © Software AG 200220

Working with the Natural Web InterfaceGeneral Programming Considerations

Changing the Amount of Data Transferred

To change the amount of data transferred between browser and Natural, go through the following steps:

1. Set the following variables and parameter to the same value:
the upper bound of the variable ##HTTP_RETURN_PAGE in the global data area W3CONTEX;
the upper bound of the variable RETURN_PAGE in the parameter data area W3PARM;
parameter RPC_INOUT_LENGTH in the .ini file of the used Natural Web Server Extension
program.
This defines the maximum length of a generated page.

2. Set the following variables to the same value:
the upper bound of the variable ##HTTP_ENVIRONMENT in the global data area W3CONTEX;
the upper bound of the variable ENVIRONMENT in the parameter data area W3PARM.
This defines the maximum length of the data received. This value must be smaller than or equal to the
maximum length of a generated page (defined in Step 1).

3. Recatalog W3CONTEX, W3PARM and W3ACCES in library SYSWEB (W3ACCES encapsulates all calls
to W3CONTEX).

4. Recatalog all subprograms which are to be called via the Natural Web Server Extension and all programs
called NAT-*, E3*, D3*, D4*and Web* in the library SYSWEB.

Testing Subprograms

There are three ways to test your subprograms:

1. Call the subprogram from your web browser.
2. Call the subprogram NAT-DIR in the library SYSWEB to see the contents of a Natural library. You can

also specify the name of the library in the parameters, for example http://.../sysweb/
NAT-DIR?LIB=SYSEXT. Click on your program to start it.

3. If you do not want to call your subprogram from the web, you can use the Natural program WEB-ONL to
simulate a remote call. The output of this program will be saved as a Natural text object. This "online
execution" allows you to use the Natural Debugger.

21Copyright © Software AG 2002

Changing the Amount of Data TransferredWorking with the Natural Web Interface

The Natural Web Server Extensions

The Natural Web Server Extension is called from a HTTP server. The program repackages the parameters it
receives from the HTTP server and performs an Entire Broker RPC or a DCOM call to the specified Natural
subprogram or method.

Parameters

Data sent by the HTTP server is recognized and preprocessed. The URL, which was transmitted to the HTTP
server in a URL-decoded (modified) form, is reset to its original state. All non-binary data can be transmitted as
data and will be converted from ASCII to EBCDIC and vice versa, if necessary.

Initialization File

Only variables specified in your HTML page will automatically be transferred to the subprogram called. All
other variables to be transferred must be specified in an ENV= entry of the .ini file. In this way, it is possible to
add variables which will be treated as system environment variables. To add a system environment variable,
specify a SETENV= entry in the .ini file.

Example .ini file

 ENV=HTTP_REFERRER
 ENV=HTTP_HOST
 ;
 SETENV=VERSION:=alpha
 SETENV=BROKER:=local

Error Logging

To save the last HTML page that was transmitted from the server to a file, specify the TRACE_FILE parameter
in your configuration file.

To return an error log, specify the ERROR_LOG_FILE parameter as log-file name in your configuration file.

To get your own error screen, specify the ERROR_TEMPLATE parameter in your configuration file with your
desired HTML error page’s name. Environment variables can be specified in the HTML error page by using the
prefix "$". With the environment variable $NWW_ENVIRONMENT, all environment variables transmitted to
the subroutine called will be written as comment lines to the error page.

Data Areas

The subprograms in the Natural server environment have to use the parameter data area W3PARM from the
library SYSWEB.

 DEFINE DATA
 PARAMETER USING W3PARM
 ...
 END-DEFINE

The size of two specific variables in the global data area W3CONTEX has to be equal to the size of two specific
variables in the parameter data area W3PARM:

GDA W3CONTEX PDA W3PARM

##HTTP_RETURN_PAGE(A250/1:a) ##RPC.RETURN_PAGE(A250/1: a)

##HTTP_ENVIRONMENT(A250/1: b) ##RPC.ENVIRONMENT(A250/1: b)

Copyright © Software AG 200222

Working with the Natural Web InterfaceThe Natural Web Server Extensions

The size of the variable ##RPC_RETURN_PAGE in the parameter data area W3PARM has to be equal to the
value specified in RPC_INOUT_LENGTH defined in the configuration file of the calling program.

Naming Conventions of the Library SYSWEB

Subroutines W3*

W3* subroutines access the interface to your HTTP server in the Natural Web Server Extension. Such an
interface consists (basically) of a parameter data area and of a log of the data transmitted. The W3*
subroutines used by the subprogram are called by the HTTP server using the Natural RPC.

Subroutines H3*

If you call one the H3* subroutines from one of your subroutines, it creates a basic HTML tag.

Subprograms NAT*

There are some utilities to be called from the Internet.

Natural Text Members T3*

They describe what the Library SYSWEB contains, what the subroutine names are and which parameters
can be passed. They also provide a code sample of how to invoke them. Use the utility nat-docu to access
this online documentation.

Subprograms E3*

Sample code of the online documentation.

Members D3* and D4*

They are two demonstration applications.

Programs Web*

They are utilities that run from the Natural NEXT prompt.

23Copyright © Software AG 2002

Naming Conventions of the Library SYSWEBWorking with the Natural Web Interface

Conversion Program: HTML to Natural
Not applicable to mainframe systems.

This section describes the use of HTML to Natural, a dialog that enables you to convert an HTML page into a
Natural subprogram for use with Natural Web Interface.

Using HTML to Natural to generate Natural code from an HTML page avoids you having to adapt HTML input
to the conventions of Natural code. You can then move the "HTML-page-turned-subprogram" to the server,
including all the other Natural program logic you have added. If you want to change the HTML page again, go
back to your source, convert it and move it to the server again. This is much easier than writing HTML with a
browser, moving it to the server, adding Natural program logic and reiterating the process if your HTML page
changes.

This section covers the following topics:

Using the Conversion Program
Inserting a Natural Tag
Options
View
Generating a DCOM Class
Online Test Utility WEB-ONL

Using the Conversion Program
If your basic Web pages are designed with editing tools, it takes some effort to include such a page in a Natural
subprogram that can be called from the Web.

HTML to Natural is a dialog that uses an HTML page as input and generates a Natural subprogram, which can
be called by the Natural Web Server Extensions using the Natural Web Interface.

Copyright © Software AG 200224

Conversion Program: HTML to NaturalConversion Program: HTML to Natural

Below is information on:

Menu
Toolbar
Generating a Subprogram/Subroutine to be called direct from the Web

Menu

File

Select Input File...
 Selects the HTML page that should be used for the generation process.
Generate Program
 Starts the generation process.
Exit
 Leaves the program.

Edit

Input File...
 Starts the external editor for the selected HTML file.

View

Input File with Browser...
 Starts the external browser for the selected HTML file.
Call subprogram via Web Interface...
 Starts the external browser for the generated subprogram using the specified Natural Web Interface.

25Copyright © Software AG 2002

MenuConversion Program: HTML to Natural

Tools

Generate Class...
 Starts the dialog that generates a DCOM Class (see the relevant section).
Open Test Tool...
 Starts the Online Test Utility (see the relevant section).
Options...
 Specifies options for the generation process.
Save Current Settings...
 Saves the selected input and output files as default Natural parameters.

Help

Contents
 Displays this HTML-based help file.
About
 Provides general program information.

Toolbar

 Selects the HTML page that should be used for the generation process.

Starts the external editor for the selected HTML file.

Starts the external browser for the selected HTML file.

Starts the generation process.

Starts the external browser for the generated subprogram using the specified Natural Web
Interface.

Starts the Online Test Utility (see the relevant section).

Generating a Subprogram/Subroutine to be called direct from the Web

 To generate a subprogram/subroutine to be called direct from the Web

1. Select your HTML page.
2. You can view your selected HTML page with an editor/browser.
3. Close the Natural library you want to generate to.
4. Select the object type you want to generate.
5. Select your Natural file name.
6. Start the generation.
7. After generation, you can call the Natural Web Interface to show the page.

Inserting a Natural Tag
It is possible to specify Natural coding directly in the HTML page. After generation, the program needs no
additional changes.

The HTML2NAT dialog can recognize a <NATURAL> tag. All lines between <NATURAL> and
</NATURAL> will be copied, as they are, to the generated Natural source object.

Copyright © Software AG 200226

Conversion Program: HTML to NaturalInserting a Natural Tag

Appearance

<NATURAL> </NATURAL>

Below is information on:

Attributes DATA, LDA, GDA, SUB, NOT
Comment Tag
ASP-like Script Commands
Additional Script Directives
Example 1 of a Simple Generation
Example 2 of a Simple Generation with a Natural Tag

Attributes DATA, LDA, GDA, SUB, NOT

Listed below are attributes provided to define coding sections that are to be moved within the program or
excluded from the program.

Attribute Explanation

DATA <NATURAL DATA> or <NATURAL LDA> moves the defined section to the DEFINE DATA
LOCAL part of your program.

LDA

GDA <NATURAL GDA> moves the defined section to the DEFINE DATA GLOBAL part of your
program.

SUB <NATURAL SUB> moves the defined section to the end of the program. This enables you to
specify inline subroutines.

NOT <NATURAL NOT> excludes the defined section from the program. This enables you to specify
the design of part of a page that will be generated by a program.

Comment Tag

Use the comment tag "<!-- -->" to hide the display of defined sections of your coding. If you use the comment
tag and <NATURAL NOT>, you can display the predefined page with a normal browser. This helps you to
specify your page and replace parts of the page dynamically.

ASP-like Script Commands

With the new Natural Version 5.1 of HTML2NAT, not only <NATURAL> and </NATURAL> can be used but
also ASP-like (Active Server Pages) script commands which are differentiated from the text by using the "<%"
and "%>" delimiters.

Additional Script Directives

The following Natural-specific directives must be used when writing a Natural subprogram:

Output directive: <%= ... %>
Short form for <% PERFORM W3HTML ... %> tag

Subprogram directive: <%SUB ... %>
equal to the <NATURAL SUB> ... </NATURAL> tag

Global Data Area directive: <%GDA ... %>
equal to the <NATURAL GDA> ... </NATURAL> tag

27Copyright © Software AG 2002

Attributes DATA, LDA, GDA, SUB, NOTConversion Program: HTML to Natural

directive: <%LDA ... %>
equal to the <NATURAL LDA> ... </NATURAL> tag

Not directive: <%NOT ... %>
equal to the <NATURAL NOT> ... </NATURAL> tag

Processing directive <%@ LANGUAGE=NATURAL %>
indicates that the used language is Natural.

Example 1 of a Simple Generation

HTML document:

 <HTML><HEAD><TITLE>
 Example1 genNat
 </TITLE></HEAD><BODY><H2>
 Example1 genNat
 </H2><HR>
 <P>This is for your output
 </BODY></HTML>

Generated Natural subprogram:

Copyright © Software AG 200228

Conversion Program: HTML to NaturalExample 1 of a Simple Generation

 * ----- SUBPROGRAM generated out of file:
 * ----- C:\example1.html
 DEFINE DATA
 PARAMETER USING W3PARM
 LOCAL USING W3CONST
 LOCAL
 * ----- PRIVATE VARIABLES -----
 1 W3VALUE (A250)
 END-DEFINE
 *
 * ----- ERROR HANDLER -----
 ON ERROR
 PERFORM W3ERROR ##W3ERROR
 PERFORM W3END ##RPC
 ESCAPE ROUTINE
 END-ERROR
 * ----- INITIALIZE HTTP API -----
 PERFORM W3INIT ##RPC
 * ----- HEADER FOR SERVER -----
 PERFORM W3CONTENT-TYPE ’text/html’
 *
 * ----- MAIN PROGRAM -----
 PERFORM W3TEXTLINE’<HTML><HEAD><TITLE>’
 PERFORM W3TEXTLINE ’Example genNat’
 PERFORM W3TEXTLINE’</TITLE></HEAD><BODY><H2>’
 PERFORM W3TEXTLINE ’Example genNat’
 PERFORM W3TEXTLINE ’</H2><HR>’
 PERFORM W3TEXTLINE ’<P>This is for your output’
 PERFORM W3TEXTLINE ’</BODY></HTML> ’
 * ----- END HTTP API -----
 PERFORM W3END ##RPC
 * ----- END MAIN PROGRAM -----
 *
 *
 * ----- SUBROUTINES -----
 END

Example 2 of a Simple Generation with a Natural Tag

HTML document:

29Copyright © Software AG 2002

Example 2 of a Simple Generation with a Natural TagConversion Program: HTML to Natural

 <HTML><HEAD><TITLE>
 Example2 genNat
 </TITLE></HEAD><BODY><H2>
 Example2 genNat
 </H2><HR>
 <P>This is for your output
 <HR>
 <P>generated at:
 <NATURAL NOT>
 Time/Date
 </NATURAL>
 <NATURAL><!--
 PERFORM DOTIME
 --></NATURAL>
 <NATURAL SUB><!--
 DEFINE SUBROUTINE DOTIME
 COMPRESS *TIME *DATE INTO #VALUE
 PERFORM W3TEXTLINE #VALUE
 END-SUBROUTINE
 --></NATURAL>
 <NATURAL DATA><!--
 1 #VALUE (A30)
 --></NATURAL>
 </BODY></HTML>

Generated Natural subprogram:

Copyright © Software AG 200230

Conversion Program: HTML to NaturalExample 2 of a Simple Generation with a Natural Tag

 * ----- SUBPROGRAM generated out of file:
 * ----- C:\example2.html
 DEFINE DATA
 PARAMETER USING W3PARM
 LOCAL USING W3CONST
 1 #VALUE (A30)
 * ----- PRIVATE VARIABLES -----
 1 W3VALUE (A250)
 END-DEFINE
 *
 * ----- ERROR HANDLER -----
 ON ERROR
 PERFORM W3ERROR ##W3ERROR
 PERFORM W3END ##RPC
 ESCAPE ROUTINE
 END-ERROR
 * ----- INITIALIZE HTTP API -----
 PERFORM W3INIT ##RPC
 * ----- HEADER FOR SERVER -----
 PERFORM W3CONTENT-TYPE ’text/html’
 *
 * ----- MAIN PROGRAM -----
 PERFORM W3TEXTLINE’<HTML><HEAD><TITLE>’
 PERFORM W3TEXTLINE ’Example2 genNat’
 PERFORM W3TEXTLINE’</TITLE></HEAD><BODY><H2>’
 PERFORM W3TEXTLINE ’Example2 genNat’
 PERFORM W3TEXTLINE ’</H2><HR>’
 PERFORM W3TEXTLINE ’<P>This is for your output’
 PERFORM W3TEXTLINE ’<HR>’
 PERFORM W3TEXTLINE ’<P>generated at:’
 PERFORM DOTIME
 PERFORM W3TEXTLINE ’</BODY></HTML>’
 * ----- END HTTP API -----
 PERFORM W3END ##RPC
 * ----- END MAIN PROGRAM -----
 *
 *
 * ----- SUBROUTINES -----
 DEFINE SUBROUTINE DOTIME
 COMPRESS *TIME *DATE INTO #VALUE
 PERFORM W3TEXTLINE #VALUE
 END-SUBROUTINE
 END

Note:
The syntax of the Natural program will not be checked during conversion.

Options

31Copyright © Software AG 2002

OptionsConversion Program: HTML to Natural

Input/Output Fields

Field Explanation

Delete unnecessary white
space

If checked, multiple white-space characters such as blank, new line, tab, will be
reduced to a single white space. For special HTML tags such as <PRE>
<TEXTAREA> or <SCRIPT>, the white space will not be collapsed.

Default value: unchecked

Save <NATURAL NOT>
... <NATURAL> in
Source

If checked, the content of <NATURAL NOT> tags will not usually be generated
into the Natural source. This option generates the content of <NATURAL NOT>
as comment into the Natural source.

Default value: unchecked

Stow after Generation If checked, the generated program will be stowed if the generation has been
successful.

Default value: checked

Natural Line Length The length of the generated Natural source lines: the minimum value is 20, the
maximum 248.

Default value: 72

Copyright © Software AG 200232

Conversion Program: HTML to NaturalInput/Output Fields

View

Below is information on:

Input/Output Fields
Buttons

Input/Output Fields

33Copyright © Software AG 2002

ViewConversion Program: HTML to Natural

Field Explanation

HTML
Editor

The external program that is used to edit the source of the HTML page.

Default Value: NOTEPAD

HTML
Browser

The external program that is used to display the HTML page.

Default: Microsoft Web browser ActiveX Control

Use internal
Browser

The external program that is used to display the HTML page.

To select your own browser, uncheck this box.

Default value: checked

Web
Interface
Server

The URL to the HTTP server when installed. If the Natural Web Interface has been configured
correctly, the name of the library and the subprogram are added to this URL. The browser will
then be executed to test the generated program.

Default value: http://localhost/cgi-bin/nwwdcgi.exe

Default
Input File

The default input file to be used for the generation.

Default value: C:\Program Files ...*.html

Buttons

OK Leaves the dialog and saves the changes.

Cancel Leaves the dialog without saving your changes.

Apply Saves the current input.

Generating a DCOM Class
If the Natural Web Interface subprograms should be called using DCOM instead of RPC, a DCOM class is
needed. This class contains as methods all relevant Natural subprograms for the Natural Web Interface.

The program HTML to Natural automatically generates the specified class. To stow the generated class, a Local
Data Area (LDA) is needed to specify the Global Unique IDs (GUIDs) of the DCOM objects. The name of the
LDA beginning with L followed by the first seven characters of Library Name.

Below is information on:

Invoking Generate Class
Input/Output Fields
Example for Library SYSWEB
Buttons

Invoking Generate Class

 To invoke the dialog Generate Class for Web Interface

Copyright © Software AG 200234

Conversion Program: HTML to NaturalGenerating a DCOM Class

1. Start the dialog WEB-R2DC
Or open the dialog HTML2NAT.

2. Click Menu > Tools > Generate Class.

Input/Output Fields

Field Explanation

Library
Name

The name of the library to be scanned.

Class
Source

The name of the class source. We recommend that the name you choose for Class Source is
identical to the name of the library.

Class
Name

The name of the class that can be called later from the Internet. We recommend that the name you
choose for Class Name is identical to the name of the library for which the class is generated.

LDA
Name

The name of the LDA containing the GUIDs for the class ID and the Natural Web Interface ID.
For the naming conventions that apply, see Example for Library SYSWEB below.

Example for Library SYSWEB

The LDA name is LSYSWEB. Name the first GUID CLSID- followed by the Library name and the second
GUID IID-NATWEB.

 T Comment

 *** Top of Data Area ***

X U 1 CLSID-SYSWEB A 36

X U 1 IID-NATWEB A 36

 *** End of Data Area ***

Attention:
Do not copy and rename or move an LDA in order to get new GUIDs for your classes. If an LDA is copied and
renamed or moved, the preset GUID is not changed. This may cause major problems.

35Copyright © Software AG 2002

Input/Output FieldsConversion Program: HTML to Natural

Buttons

OK Generates the class and leaves the dialog.

Cancel Leaves the dialog without generation.

Set Default
Values

This button is enabled if no relevant class is found for the library. The defaults for class
source and class name are given. The LDA needed has to be generated in advance.

Online Test Utility WEB-ONL
This Test Utility is a component of Natural Web Interface. You have the ability to check your subprogram
locally without involving an HTTP server. The transfer parameters for your Web page are transferred into the
Test Utility and are posted directly to the business logic. As communication platform, you can choose either
RPC or DCOM as in real remote communications. The result is either the Web page expected or an error
message. The Web page can be viewed with the browser or a viewer of your choice. If you receive an error
message, you can easily debug your business logic locally without writing an extra test routine. No remote
debugging is needed.

Features:

Local application checking.
No need for remote debugging.
Simplified error checking.
Comfortable operation by user friendly interface.
No need to write an extra test routine.

Below is information on:

Prerequisites
Running the Application
Supported Content-Types
Menu
Input/Output Fields
Buttons

Prerequisites

Web browser which supports different content types, for example, Microsoft Internet Explorer Version 5.0
or higher.
Any available text editor.

Running the Application

 To define path adjustments

1. Start the main dialog.
2. Select a browser and viewer of your choice with Tools > Options...
3. Set the browser, viewer and work file path.
4. Press the OK button.

 To start the application

Copyright © Software AG 200236

Conversion Program: HTML to NaturalOnline Test Utility WEB-ONL

1. Start the dialog WEB-ONL.
2. Select a library and subprogram name.
3. Optional: add parameters.
4. Choose RPC or DCOM.
5. Press the Execute button.
6. View the result by pressing either the Result... or the Browse... button.

Supported Content Types

The following Content Types are supported by the Test Utility:

Content Type Extension

"application/rtf" "rtf"

"application/powerpoint""ppt"

"application/msword" "doc"

"application/excel" "xls"

"text/html" "htm"

"text/plain" "txt"

"text/xml" "xml"

"text/richtext" "rtf"

If you need further Content Types, change the subroutine HTML2CONTENT-TYPE (SYSWEB/W3CO2EXT)
and extend the translation table to your own needs.

37Copyright © Software AG 2002

Supported Content TypesConversion Program: HTML to Natural

Menu

Object

Execute Subprogram
 Starts the editor chosen with the Options dialog.
Save to Natural Text
 Saves the returned data as Natural object of the type Text.
Exit
 Leaves the dialog.

View

Result...
 Executes the selected subprogram.
Browser...
 Starts the browser chosen with the Options dialog.
Options...
 Opens the Options dialog.

Help

Contents
 Displays this HTML-based help file.
About
 Provides general program information.

Copyright © Software AG 200238

Conversion Program: HTML to NaturalMenu

Input/Output Fields

Field Explanation

Subprogram:
Library
Name

Enables you to specify the library and the name of the required subprogram. The available
libraries and subprograms are automatically taken from the library workspace and listed in
selection boxes.

Server If any of the name-value-pairs are server variables, you need to check this toggle button. Note
that any status will last until you change it again.

Call with Can be selected with either DCOM or RPC as communication form. For DCOM, you have to
register your classes first.

Default: RPC

Parameter:
Name
Value

Here you can enter the name-value-pairs needed from the subprogram. To take them over into
the parameter list, press the Add button. To modify the entries, use the Modify button. You do
not have to substitute &, =, %; this will be done by the WEB-ONL program. If you use server
parameters, check the Server toggle button before you add the parameter to the parameter list.

In the parameter list, all name-value-pairs are displayed. &, =, % are substituted. To delete a
pair, select the item and press the Delete button. Every selected item will be inserted into the
Name and Value fields. If you wish to modify a pair, select the item, change it in the Name and
Value fields and press the Modify button.

Buttons

 Runs the process of receiving the output from the requested subprogram. The status of the process
can be seen in the status bar at the bottom of the WEB-ONL dialog window.

Starts the editor. It is disabled as long as you have not executed the program and if you have not
changed the subprogram library or name. You can choose the editor with the Options dialog.

Starts the browser chosen with the Options dialog. It is disabled as long as you have not executed
the program and if you have not changed the subprogram library or name.

Call Natural Web Interface Online Test Utility (WEB-ONL) to run the generated program and
show the generated result.

39Copyright © Software AG 2002

Input/Output FieldsConversion Program: HTML to Natural

Programming Tips
This section provides some tips on using the Natural Web Interface.

This section covers the following topics:

Editing in Lower Case
Quote v. Apostrophe
Variables defined by Value
Access to Resources
Constant Values
Creating a New Page
DCOM / RPC

Editing in Lower Case
If you use Natural on a mainframe, you may set at your Editor the following:

Set your Editor in Lower Case

1. Follow the following menu structure:
Profile > Additional Options > General Defaults > Editing in Lower Case

2. Enter Y in the field Editing in Lower Case.

All programs delivered with the Natural Natural Web Server Extension use ’ (quotation) and " (double
quotation) in a way, that conversion to uppercase depends on which pair of characters is used.
Strings surrounded by pairs of ’ (quotation) will not be converted to upper case and strings surrounded by
pairs of " (double quotation) will be converted.

Quote v. Apostrophe
To use both quote and apostrophe within your application, check the Natural parameter Translation of quotations
marks (TQ). This parameter controls the translation of a quotation mark (") within a Natural text constant. It
takes effect at compilation time only. Turn this parameter to OFF or use W3-QUOTE-DQUOTE.

Parameters

1 W3QUOTE (A001) /* o/ : Quote (")
 1 W3APOSTROPHE (A001) /* o/ : Apostrophe (’)

How To Invoke

PERFORM W3-QUOTE-DQUOTE W3QUOTE W3APOSTROPHE

Variables defined by Value
All input variables are defined BY VALUE , this means, every value which is MOVE compatible can be used,
especially constant strings.

Copyright © Software AG 200240

Programming TipsProgramming Tips

Access to Resources
All resources, such as pictures, sounds or Java applets, are saved at the HTTP server. If you want to create and
relocate the program, do not hardcode the pathname of these resources.

When defining an environment variable, you specify the current path of the resource. The environment variable
can be set at the Natural Web Server Extensions. If no variable is set, use a default setting.

Constant Values
The parameter data area W3CONST contains some useful constant values:

##HTTP_END
All routines which write their output to the return page remove trailing blanks. If no removing should be
done, compress a ##HTTP_END string at the end of your string. The output processing will increase.

##HTTP_NEWLINE and ##HTTP_NEWLINE_END
Writing to the return page, a physical new line can be created by compressing the string
##HTTP_NEWLINE into the string. To avoid stripping, you can also use ##HTTP_NEWLINE_END.

##HTTP_NEWLINE_LENGTH
The length of the string ##HTTP_NEWLINE may differ for different implementations. Use
##HTTP_NEWLINE_LENGTH if the length of ##HTTP_NEWLINE is needed. The length of string is
##HTTP_NEWLINE_LENGTH+1.

Creating a New Page
If your output may exceed the limits of your return page, use W3COUNTER to evaluate how may bytes are free
at the return page.

41Copyright © Software AG 2002

Access to ResourcesProgramming Tips

DCOM / RPC
When you write an application that works with both RPC and DCOM, there are some aspects you should
consider:

Do not exceed the name sign limitation for Natural libraries and subprograms. With the DCOM interface,
you can use up to 32 characters to name a class and its methods (see NaturalX documentation).
Use the same name for a class and the library into which all your subprograms are located. This may not be
according to object-oriented design principles, but gives you the possibility to access your subprograms via
RPC or DCOM. EntireX supports a dynamic logon to a given Natural library.
Now the library is the equivalent to a class, and all programs contained in that library are the methods of
this class. Calling with RPC is now ready. To call with DCOM, you only have to specify all subprogram as
methods of your class.
With the Natural Web Interface, a program called W3-R2DC(SYSWEB) to generate a class for a Natural
library is delivered. The program checks all subprograms if W3PARM is used as parameter data area and
includes these subprograms as methods to the generated class.

Copyright © Software AG 200242

Programming TipsDCOM / RPC

Web Interface Administration
This section covers the following topics:

Set the Size of the Return-Page Transport Buffer
Set the Size of the Return Page
Create a User-defined Error Page
Create a User-defined Error Page XML-Style
Alphanumeric-to-HTML Conversion
Alphanumeric-to-URL Conversion

Set the Size of the Return-Page Transport Buffer

Changing the Transport Send Buffer Width

To change the transport send buffer width:

1. Change the upper bound of the variable RETURN_PAGE in the parameter data area W3PARM. Use this
value for the parameter NWW_INOUT_LENGTH in the initialization file used for the Natural Web Server
Extension program and the initialization of the value ##HTTP_RETURN_PAGE_PART in the Local Data
Area W3LIMITS.
This defines the maximum length of the transport buffer.

2. Recatalog all W3* sources from library SYSWEB.
3. Recatalog all subprograms that are to be called using the Natural Web Server Extension, all NAT-*, HTTP*

and NAT-* programs from the library SYSWEB.

Changing the Received Data Buffer Width

To change the received data buffer width:

1. Change the upper bound of the variable ##HTTP_ENVIRONMENT_BLOCK (divided by 250) in the local
data area W3CONTEX and of variable ENVIRONMENT in the parameter data area W3PARM to the same
value.

2. Use this value to initialize ##HTTP_ENVIRONMENT_MAX in the local data area W3LIMITS.
This defines the maximum length of received data.
This value must be less than or equal to the maximum length of the transport buffer (see Step 1).

3. Recatalog all W3* sources from the library SYSWEB.
4. Recatalog all subprograms which are to be called using the Natural Web Server Extension,

all NAT-*, HTTP* and NAT-* programs from library SYSWEB.

Changing Your Return Page

To change your return page:

1. Change the upper bound of ##HTTP_RETURN_BLOCK (divided by 250) and ##HTTP_RETURN_PAGE
in the local data area W3CONTEX
and use this value to initialize ##HTTP_RETURN_PAGE_MAX in the local data area W3LIMITS.

2. Recatalog all W3* sources from library SYSWEB.
3. Recatalog all subprograms that are to be called using the Natural Web Server Extension, all NAT-*, HTTP*

and NAT-* programs from the library SYSWEB.

43Copyright © Software AG 2002

Web Interface AdministrationWeb Interface Administration

Set the Size of the Return Page
To change the amount of the data transferred between the HTTP server and Natural:

1. Change the upper bound of the variable ##HTTP_RETURN_PAGE in the global data area W3GLOB, of
variable RETURN_PAGE in the parameter data area W3PARM and of parameter
RPC_INOUT_LENGTH in the initialization file of the Natural Web Server Extension program used to
the same value. This defines the maximum length of a generated page.

2. Change the upper bound of the variable ##HTTP_ENVIRONMENT in the global data area W3GLOB and
of the variable ENVIRONMENT in the parameter data area W3PARM to the same value. This defines
the maximum length of data received. This value must be less or equal than the maximum length of a
generated page (see step 1).

3. Recatalog W3GLOB, W3PARM and W3ACCESS from the library SYSWEB. (W3ACCESS encapsulates
all calls to the W3GLOB).

4. Recatalog all subprograms which are to be called via the Natural Web Server Extension, all NAT-* and
HTTP* programs from the library SYSWEB and all NAT-* and E3* subprograms from library SYSWEB.

Create a User-Defined Error Page
If a Natural error occurs and the default ON ERROR block is specified, W3ERROR will be called and a
predefined error page will be generated.

If you want to change this error page, change the Subroutine W3ERROR-TEMPLATE
(SYSWEB/W3ERRTMP).

This program generates a complete HTML page.

Create a User-Defined Error Page XML-Style
If a Natural error occurs and the default ON ERROR block is specified, W3ERROR will be called and a
predefined error page will be generated.

If you want to change this error page to an XML-conform HTML, proceed as follows:

1. Uncatalog the subroutine (SYSWEB/W3ERRTMP).
2. Open the subroutine SYSWEB/W3ERXTMP).
3. Rename W3ERROR-TEMPLATE-XML to W3ERROR-TEMPLATE.
4. Stow the program.

This program now generates a complete XML-conform HTML page.

Alphanumeric-to-HTML Conversion
For a conversion to HTML, special characters have to be replaced by the correct HTML representation.

The subroutine W3-ASCII-HTML-TABLE (SYSWEBP/W3AS2HT) contains the settings for the
replacement of characters.
W3INIT and H3-TEXT-TO-HTML will call W3-ASCII-HTML-TABLE.

The generated table is saved in the global data area W3GLOB for faster access. It is possible to save up to 128
replacements.

Copyright © Software AG 200244

Web Interface AdministrationSet the Size of the Return Page

If HEX values are used for the definition (e.g. quote), a value for the ASCII and one for the EBCDIC character
set has to be defined. Otherwise the file is not portable.

45Copyright © Software AG 2002

Alphanumeric-to-HTML ConversionWeb Interface Administration

Alphanumeric-to-URL Conversion
For URL decoding, some special characters have to be replaced by the correct URL-conform representations.

The subroutine H3-ASCII-URL-TABLE(SYSWEB/H3AS3URL) contains the settings for the replacement
of characters.
H3-ASCII-URL-TABLE will be called by H3-TEXT-TO-URL.

It is possible to save up to 128 replacements.

If HEX values are used for the definition (e.g. quote), a value for the ASCII and one for the EBCDIC character
set has to be defined. Otherwise the file is not portable.

Copyright © Software AG 200246

Web Interface AdministrationAlphanumeric-to-URL Conversion

Demonstration Application - without
JavaScript
This section covers the following topics:

Business Requirements
Design Decisions
Libraries, Modules and Naming Conventions
Starting the Demonstration Application
Starting the Natural Web Interface Online Manual
Requirements

Business Requirements
The demonstration application shows the use and programming of the Natural Web Interface. The functionality
includes simple file maintenance with various selection functions as shown in the graphic below.

The demonstration is platform independent and is based on the Adabas files EMPLOYEES and VEHICLES.

47Copyright © Software AG 2002

Demonstration Application - without JavaScriptDemonstration Application - without JavaScript

Copyright © Software AG 200248

Demonstration Application - without JavaScriptBusiness Requirements

Design Decisions
The HTML-GUI has some restrictions for application design:

a unique layout is not possible for different browsers
the HTML-GUI elements have restricted functionality. For example, no input in selection box, only
predefined fonts or buttons for submit (no default button)

So in the demonstration application we use:

forms with submit buttons
global data exchange with hidden fields on the forms
usage of the form send back method GET (URL plus visible parameters for bookmarks)
no usage of VB / JAVA Scripts for implementation of processing rules
a command dispatcher module (D3CHOOSE) for navigation
standard pictures for group/male/female persons because of copyright reasons

Libraries, Modules and Naming Conventions
The demonstration contains one module (see also the installation of the Natural Web Server Extension):

SYSWEB

This library contains the following modules:

T3 HTML text for online documentation

E3 Examples for online documentation

D3 Demonstration application modules

Starting the Demonstration Application
The start module for the demonstration is D3MENU.

To start the demonstration application (depending on your installation of the Natural Web Server Extension), call
the subprogram D3MENU in library SYSWEB.

Example of the URL to call the demonstration application:
http:// yourserver / yourcgi /sysweb/d3menu

49Copyright © Software AG 2002

Design DecisionsDemonstration Application - without JavaScript

Starting the Natural Web Interface Online Manual
You can start the online documentation from the Natural Web Interface.

The start module for the demonstration is D3MENU.

To start the online manual, call the subprogram D3MENU in library SYSWEB.

Example of the URL to call the demonstration application:
http:// yourserver / yourcgi /sysweb/d3menu

Requirements
The following software must be installed:

Natural Web Server Extensions, a part of Natural Web Interface.
Adabas with the file EMPLOYEES.

Perform a CATALL for the programs D3* in the library SYSWEB to activate the demonstration application.

To view the pictures of the example delivered with the Natural Web Server Extension, copy all pictures to a
directory /pictures of your HTTP server
or set the environment variable PICTURES for the Natural Web Server Extension to the specific directory.

Copyright © Software AG 200250

Demonstration Application - without JavaScriptStarting the Natural Web Interface Online Manual

Demonstration Application - with
JavaScript
This section covers the following topics:

Business Requirements
Design Decisions
Starting the Demonstration Application
Requirements

Business Requirements
The demonstration application shows the usage and programming of the Natural Web Interface. The
functionality includes simple file maintenance with various selection functions as shown in the graphic below.

For the purpose of cross-platform availability, this demonstration is based on the Adabas files EMPLOYEES and
VEHICLES.

51Copyright © Software AG 2002

Demonstration Application - with JavaScriptDemonstration Application - with JavaScript

Copyright © Software AG 200252

Demonstration Application - with JavaScriptBusiness Requirements

Design Decisions
Use state of the art web design:

Javascript
’global’ data exchange with hidden fields on the forms
usage of the form send back method GET (URL plus visible parameters for bookmarks)
a command dispatcher module (D4CHOOSE) for navigation

Starting the Demonstration Application
The start module for the demonstration is D4ENTER. Depending on your installation of the Natural Web Server
Extension, call the subprogram D4ENTER in library SYSWEB.

Example for the URL to call the demonstration application:
http:// yourserver/yourcgi

Requirements
Natural Web Server Extensions, a part of Natural Web Interface, and Adabas with file Employee have to be
installed. Perform a CATALL for the programs D4* in the library SYSWEB to activate the demonstration
application.

To view the pictures in the example, you must install the Natural Web Server Extension demonstration part in
your HTTP Server root.

53Copyright © Software AG 2002

Design DecisionsDemonstration Application - with JavaScript

Natural Web Interface Error Messages
This section lists error messages you may receive when you are working with the Natural Web Interface. A
description of each error and a solution is provided.

Error Messages

Error
Number

Error Message Description Action

NWW9002 No elements defined. The number of array values is set
to 0.

Correct the program.

NWW9003 Can only be used inside a
FORM tag.

This tag can only be used inside
a FORM tag.

Initialize a FORM with
H3-OPEN-FORM.

NWW9004 A FORM tag without
ACTION is not allowed.

For each FORM, an ACTION
has to be specified.

Correct the program.

NWW9005 LI tag outside a list not
allowed.

LI has to be placed inside a list. Initialize a FORM with
H3-OPEN-LIST.

NWW9006 List nested too deep: ... Only 10 level are supported for
lists.

Decrease your level.

NWW9007 Radio Button Group has no
name.

To generate a Radio Button
Group, a name is needed.

Add a name.

NWW9008 Element ... has no name. Each element of a Checkbox
Group needs a name.

Add name.

NWW9009 Textarea has no name. To generate a Textarea, a name is
needed.

Add name.

Copyright © Software AG 200254

Natural Web Interface Error MessagesNatural Web Interface Error Messages

Natural Web Interface Installation
The Natural Web Interface is installed in the course of the Natural for Windows NT installation procedure.

Note:
During the default installation of Natural only the Natural Web Server Extensions for cgi interfaces will be
installed.
If isapi or nsapi Natural Web Server Extensions are needed, please select Custom Installation and specify the
Natural Web Server Extensions you prefer.

This document contains the following sections:

Configuring the Natural
Web Interface

Describes how to configure the Natural Web Interface. If you are not
familiar with a specific product, please read the corresponding
installation instructions for more information.

Troubleshooting Provides hints for known problems.

55Copyright © Software AG 2002

Natural Web Interface InstallationNatural Web Interface Installation

Configuring the Natural Web Interface
This section provides information needed to configure the Natural Web Interface. If you are not familiar with a
specific product, refer to the corresponding product documentation for more information.

This section covers the following topics:

Supported HTTP Servers
Configuring RPC and RPC Server
Configuring the DCOM Server
Configuring the Web Interface
Configuring an HTTP Server
Communication with Natural Security
Troubleshooting

The latest documentation updates are published in ServLine24: http://servline24.softwareag.com. Click to
Product Documentation > Recently Added Documentation and select the item from the selection box.

Supported HTTP Servers

Operating System HTTP Server

Windows NT (Intel) Microsoft Internet Information Server Version 4.0
Netscape FastTrack Server Version 3.0
Apache Version 1.3

UNIX (*) Netscape FastTrack Server Version 3.0
Apache Version 1.3

OS/390 Unix System Services IBM Websphere Application Server for OS/390 V2R8.0

Configuring RPC and RPC Server
In the following configuration description, ETB255 is the name of a Broker and NATWEB1 the name of an RPC
Server used for the examples.

For the installation and configuration, refer to the Natural RPC, Entire Net-Work, and Entire Broker
documentation.

The following topics are documented below:

Natural Version 3.1.5 for Mainframes / Natural Version 4.1.2 for UNIX Server / Natural Version 5.1.1 for
Windows
EntireX / Entire Broker SDK

Natural Version 3.1.5 for Mainframes / Natural Version 4.1.2 for UNIX
Server / Natural Version 5.1.1 for Windows

On Windows NT/2000 and UNIX Systems

Copyright © Software AG 200256

Configuring the Natural Web InterfaceConfiguring the Natural Web Interface

To change your NATPARM file so that two additional steplibs can be accessed in the RPC environment:

In the section Environment Assignments, add the two steplibs SYSWEB and SYSEXT to the steplib
parameter subsection.

In an OS/390 Unix System Services Environment

If Natural Security is installed:

Define the steplibs SYSWEB and SYSEXT for your library.

If Natural Security is not installed:

Modify the Natural program WEB-STLB in library SYSWEB by entering the DBID and file number of the
associated FNAT system file of the libraries SYSWEB and SYSEXT. In case of need, you can add
additional steplibs.
STOW the program.
The STACK parameter for your RPC server should have the following value:
STACK=(LOGON SYSWEB;WEB-STLB)

EntireX / ENTIRE Broker SDK

On Windows NT / Windows 2000 Systems

Setting the environment variables is not required.

On UNIX (All Platforms)

All EntireX-relevant environment variables must be passed by the HTTP server.

Configuring the DCOM Server
To install and configure the DCOM server, proceed as described in the NaturalX documentation.

In the following configuration description, NATWEBEXT is the name of an external DCOM Server and
NATWEB is the name of a local DCOM Server.

This section covers the following topics:

DCOM
NaturalX 3.1 Server

DCOM

On UNIX (All Platforms)

All EntireX-relevant environment variables must be be passed by the HTTP server.

In an OS/390 Unix System Services Environment

The DCOM version of the Natural Web Interface Server Extension is currently not supported for OS/390 Unix
System Services.

57Copyright © Software AG 2002

Configuring the DCOM ServerConfiguring the Natural Web Interface

NaturalX Server

For all servers supporting the Natural Web Interface, add the libraries SYSWEB and SYSEXT as steplibs, as
described above in the section Natural Version 3.1 for Mainframes / Natural Version 4.1.2 for UNIX Server /
Natural Version 5.1.1 for Windows Server.

Configuring the Web Interface

Natural Web Interface

For mainframe, Windows NT, Windows 2000 and UNIX environments no configuration is needed.

Natural Web Server Extensions for RPC

Adjust the configuration file using an external editor:

RPC_ETB_ID_NAME=ETB255
RPC_SERVER_NAME=NATWEB1

In an OS/390 Unix System Services Environment

The parameter NWW_OUT_CSS_TRANSLATE must be set in the Configuration File. Its value depends on the
codepage used.

Natural Web Server Extensions for DCOM

Local DCOM (All Platforms)

No adjustments are needed for local communication.

External DCOM (All Platforms)

For external communication, see the NaturalX documentation for Registry changes, or adjust the configuration
file using an external editor:

DCOM_SERVER_NAME=NATWEBEXT

On Windows NT/Windows 2000 (Internet Information Server)

If you use the Internet Information Server, the username for anonymous logon, e.g. NATWEB, is used.
NATWEB must belong to the group USER, or the GUEST account must be enabled.

On Windows NT/Windows 2000 (Apache)

If you use the Apache Server, the default settings for User/Group specified at httpd.conf work fine:

User/Group: The name (or #number) of the user/group to run httpd as User nobody
Group #-1

On Windows NT/Windows 2000 (Netscape Server)

If you use the Netscape Server, for anonymous logon, the SYSTEM account is used.

To use DCOM with remote access, a specific user, e.g. NATWEB, must be used to run the HTTP server.
This user must belong to the group USER and be defined on both computers.

Copyright © Software AG 200258

Configuring the Natural Web InterfaceConfiguring the Web Interface

Run Services from the Windows Control Panel to change the Logon for your HTTP Server service:

Select Netscape Server Service > Startup...
Log On As: yes
Userid: NATWEB
Password: **
Confirm Password: **

Natural Web Server Extensions for NSAPI

Using an RPC Server

1. Install the Natural Web Server Extensions
2. Open the ...\config\mime.types file of the HTTP Server and

add the new line at the end of the file:

type=magnus-internal/nww exts=nww

3. Open the ...\config\obj.conf file of the HTTP Server and
add the following new lines for the RPC Interface:
...
Init...
Init funcs="nww-nsapi,nww-init" fn="load-modules" shlib="nwwnsapi.dll"
Init fn="nww-init" file="<yourRoot>/nww/nsapi.ini
...
<Object name="default">
NameTrans...
NameTrans from="/nww" fn="pfx2dir" dir=" <yourRoot>/nww" name="nww"
...
Service... method=...
Service fn="nww-nsapi" method="(GET|POST|HEAD)" type="
magnus-internal/nww"
...
</Object>...
<Object name="nww">
ObjectType fn="force-type" type="magnus-internal/nww"
Service fn="nww-nsapi"
</Object>
...

4. If not only one service or broker is to be used, specify other files at the /nww directory.
5. If a static read of the .ini file is wanted (performance-relevant), add the line shown in italics to your

obj.conf.

Using a DCOM Server

1. Install the Natural Web Server Extensions.
2. Open the ...\config\mime.types file of the HTTP Server.
3. Add the new line at the end of the file:

type=magnus-internal/nww exts=nww
type=magnus-internal/nwwd exts=nwwd

4. Open the ...\config\obj.conf file of the HTTP Server.
5. Add the following new lines for DCOM:

...
Init...
Init funcs="nwwd-nsapi,nwwd-init" fn="load-modules" shlib="nwwdnsapi.dll"
Init fn="nwwd-init" file="<yourRoot>/nwwd/nsapi.ini"

59Copyright © Software AG 2002

Natural Web Server Extensions for NSAPIConfiguring the Natural Web Interface

...
<Object name="default">
NameTrans...
NameTrans from="/nwwd" fn="pfx2dir" dir=" <yourRoot>/nwwd" name="nwwd"
...
Service... method=...
Service fn="nwwd-nsapi" method="(GET|POST|HEAD)" type="
magnus-internal/dnww"
...
</Object>...
<Object name="nwwd">
ObjectType fn="force-type" type="magnus-internal/nwwd"
Service fn="nwwd-nsapi"
</Object>
...

6. If not only one service or broker is to be used, specify other files at the /nwwd directory.
7. If a static read of the .ini file is wanted (performance-relevant), add the line shown in italics to your

obj.conf.

Configuring an HTTP Server
Windows NT/Windows 2000 (Internet Information Server 4.0)

If you use the Internet Information Server, the username for anonymous logon, e.g. |USR_NATWEB, is used.

| USR_NATWEB must belong to the group USER, or the GUEST account must be enabled.

Communication with Natural Security
The new version EntireX Broker SDK supports the usage of two passwords and userids.

The first userid is used to get access through EntireX Security and the second for Natural Security.

The HTTP Server Security is involved as a third security system.

HTTP Server Security:

Restrict the access of the NWW interface at your HTTP Server. For details, refer to your HTTP server
documentation.

EntireX Security:

In the configuration File the NWW_USER_ID, NWW_PASSWORD has to be specified.

Natural Security:

A second UserId/Password (RPC_USER_ID, RPC_PASSWORD) has to be set.

If the parameter USE_REMOTE_USER is activated, the RPC_USR_ID will be set/overwritten. The
RPC_PASSWORD remains unchanged.

It is necessary to setup Natural Security with "AUTO=ON" to pass security without Password. If no
RPC_USER_ID/RPC_PASSWORD pair is set, the NWW_USER_ID/NWW_PASSWORD will be used to
enshure the compatibility with the existing implementation.

Copyright © Software AG 200260

Configuring the Natural Web InterfaceConfiguring an HTTP Server

Web Interface Troubleshooting
This section provides information on known problems:

Error Description Recommended Action

NWW0003 .ini File not found. NWW
initialization file
not found.

Check your server extension initialization
file:

It has to have the same name as the
executable with the extension .INI
The server extension initialization file
has to be placed at the same directory
as the server extension executable.
If server extension can be started from
the DOS prompt and does not run
called by the HTTP Server, then
check if the .INI file can be found if it
is copied to the same directory your
HTTP server is started from.

NWW0011 ERX error 80010014 occurred.
Severity = Error
Facility = 65536
Returncode = 20
Subfacility = 3
Location = 0
Message:
ERX_E_SERVICE_NOT_AVAILABLE -
ETB error code 00070007

Natural RPC
Server not
started/found.

Check your RPC Server:

Start your Natural RPC Server
or check your
RPC_SERVER_NAME at the NWW
initialization file.

NWW0011 ERX error 80010014 occurred.
Severity = Error
Facility = 65536
Returncode = 20
Subfacility = 3
Location = 0
Message:
ERX_E_SERVICE_NOT_AVAILABLE -
ETB error code 02150148

Broker not
started/found.

Check your Broker:

Start your Broker and Natural RPC
Server
or check your
RPC_SERVER_NAME and
RPC_ETB_ID at the NWW
initialization file.

Processing of subprogram TEST in library
W3RPCDMO failed.
Message: Status = O, Library = W3RPCDMO,
Program = NATSRVD , Level = 01, Error =
00082, Line = 4190
Subfacility = 255
Location = 0

The program you
have called does
not exist or is not
accessible.

At the moment it
is not possible to
switch
dynamically the
Natural libraries.

Check your Natural:

Does the Program really exist?
If the program does exist, check your
Logon library or the steplibs or your
NATPARM if the given library is
included.

Natural RPC Server crash.
Test with WEB-ONL on the same subprogram
gets:
WEB-ONL 1420 NAT0937 Conflicting array
def.in parm.3 (Subprogram ..).

Natural RPC does
not check the
boundaries of
arrays.

Recatalog your Programs.

61Copyright © Software AG 2002

Web Interface TroubleshootingWeb Interface Troubleshooting

Error Description Recommended Action

Demonstration application does not work. You use different
file numbers.

Recatalog the library SYSWEB.

NAT3048 File/USERID not available at open
time.

Natural uses same
ETID for different
sessions.

Set your ETID parameter to $. This
generated a new ETID for every running
Natural.

Copyright © Software AG 200262

Web Interface TroubleshootingWeb Interface Troubleshooting

Natural Web Interface Programming Guide
This document is intended for anyone who writes applications for the Natural Web Interface.

This document provides basic information on various aspects of programming the Natural Web Interface. You
should be familiar with HTML and Natural before you start to write Natural Web Interface applications.

For better understanding of the complex design of web applications, this section describes the design
and implementation of the demonstration application delivered with Natural Web Interface.

This document comprises the following sections:

Specification
First we describe which parts the demonstration application should contain,
and also the requirements for the running system.

HTML Design
Not all of your ideas can be realized easily with HTML.
Find out what aspects of your default appearance can be realized.

Program Design
Now it is time to begin the real programming.
But first we have to consider the overall design of our programs.

Implementation The specification is ready. The design is done. Let us do the work.

Fine Tuning What else can be done to have an application that is easy to use.

Example Programs
The Natural Web Interface Programming Guide contains several examples of Natural programs, as well as
references to further example programs not shown in the documentation.

All these programs are also provided in source-code form in the Natural library "SYSWEB". (The programs are
all written in structured mode.)

Please ask your Natural administrator about the availability of these libraries at your site.

The example programs use data from the Adabas files "EMPLOYEES" and "VEHICLES", which are supplied
by Software AG for demonstration purposes.

63Copyright © Software AG 2002

Natural Web Interface Programming GuideNatural Web Interface Programming Guide

Web Interface Specification
Here we describe which parts our demonstration application should contain, and requirements for the running
system.

This section covers the following topics:

Demonstration Application
Main Menu
Listing
Browse
Select
New
Show
Change
Delete
Layout

Demonstration Application
The demonstration application should implement a simple file maintenance with selection functions and listings
(see the figure below).

Main Menu

Listing

Browse

Select

Show Change

Delete

New

Adabas should be used as database, with the files "EMPLOYEES" and "VEHICLES". The "VEHICLES"
example should not be implemented in the first step.
All output should be done on a standard HTML browser, capable of JavaScript, HTML 4.0 and Cascading Style
Sheets.
It should be possible to change the complete environment consisting of HTTP server, Natural and
communication (EntireX RPC/DCOM).

Main Menu
In the Main Menu, it should be possible to specify a file name and a range. This selection should be passed to all
parts of the demonstration application

Listing
Listing should display the full record saved for an employee:

Copyright © Software AG 200264

Web Interface SpecificationWeb Interface Specification

Personnel-ID First-Name Name Sex Birth Country Zip City Area-Code Phone Department

Browse
With Browse, it should be possible to see detailed information about a person.

First-Name Name Department Area-Code Phone

In addition, an employee’s record should be able to be selected and then update, save, delete should be
performed on this record.

Select
Select gives you the possibility to see all selected records in one list. The values displayed are:

Name First-Name

In addition, an employee’s record should be able to be selected and then update, save, delete should be
performed on this record.

New
With New, a record for a new employee can be added. Each record should contain the following values:

Personnel-ID First-Name Name Sex Birth Country Zip City Area-Code Phone Department

Personnel-ID is unique among all records. Each value should be checked for consistency.

Show
Show displays all values of an record:

Personnel-ID First-Name Name Sex Birth Country Zip City Area-Code Phone Department

Change
With Change, all values except the Personnel-ID can be updated.

First-Name Name Sex Birth Country Zip City Area-Code Phone Department

Delete
The record will first be displayed, and after confirmation, deleted.

Layout
The application should be based on the corporate design of Software AG.

65Copyright © Software AG 2002

BrowseWeb Interface Specification

Copyright © Software AG 200266

Web Interface SpecificationLayout

Web Interface HTML Design
This section covers the following topics:

Given Layout as HTML Table
Restrictions
Chosen Layout
Input Layout
Functional Parts
How to Use Frames
How to Use JavaScript

The Given Layout as HTML Table
If an HTML page is to be generated with the given layout, HTML 4.0 with extensive use of Cascading Style
Sheets (CSS) is needed. In addition, the user needs a display with more the 256 colors.

If this is available, the figure below shows the result of the design. The page consists of a Table with 11 rows and
7 columns. The border on the left side is realized with one merged table field with a background picture. The
picture is repeated in the x direction. All other borders are separate fields with a fixed background color. The
area in the middle of the page is a merged area of 5 rows and 5 columns, filled with a background picture. The
small space to the right of the headline border is filled with a small picture to give the right appearance.

The pictures used are saved in jpg format, to ensure that the correct color settings are used. For example the
picture used for the middle pages used 1036 different colors.

To force the HTML browser to leave the right amount of space, a "single-pixel-GIF" is used. A transparent
picture containing only one pixel is resized to the space you need.

67Copyright © Software AG 2002

Web Interface HTML DesignWeb Interface HTML Design

HTML Source of the Table
<TABLE BORDER="0" CELLSPACING="0" CELLPADDING="0" WIDTH="500">
<!-- 1st line -->
<TR bgcolor=’#000000’>
 <! black title line >
 <TD COLSPAN=7> </TD>
</TR>
<! 2nd line>
<TR VALIGN=’MIDDLE’>
 <! black field left of the title field>
 <TD bgcolor=’#000000’>

 </TD>
 <! blue title field >
 <TD BGCOLOR="#4D7AB1" ROWSPAN="4" COLSPAN="4" ALIGN="CENTER"
VALIGN="Middle">

 </TD>
 <! black field right of the title field >
 <TD ROWSPAN=2 COLSPAN=2 bgcolor=’#000000’>

 </TD>
</TR>
<!-- 3rd line -->
<TR>
<! left shaded border >
 <TD ROWSPAN=9 style="background-image:url(bg_fl.jpg);
background-repeat:repeat-x">

 </TD>
</TR>
<!-- 4th line -->
<TR>
 <! small field right of the border>
 <TD ROWSPAN=2 style="background-image:url(bg_ro.jpg);
background-repeat:no-repeat">

 </TD>
 <! right dark blue border>
 <TD ROWSPAN=2 bgcolor=’#4D7AB1’> </TD>
</TR>
<!-- 5th line -->
<TR></TR>
<!-- 6th line -->
<TR>
 <! center field of the table >
 <TD WIDTH="480" HEIGHT="600" ROWSPAN=5 COLSPAN=5
style="background-image:url(bg_m.jpg); background-repeat:no-repeat">

 </TD>
 <! right border line>
 <TD bgcolor=’#4D7AB1’> </TD>
</TR>
<!-- 7st line -->
<TR>

Copyright © Software AG 200268

Web Interface HTML DesignHTML Source of the Table

 <! right border line>
 <TD bgcolor=’#4D7AB1’> </TD>
</TR>
<!-- 8st line -->
<TR>
 <! right border line>
 <TD bgcolor=’#83A4CD’> </TD>
</TR>
<!-- 9st line -->
<TR>
 <! right border line>
 <TD bgcolor=’#B6C7E1’> </TD>
</TR>>
<!-- 10st line -->
<TR>
 <! right border line>
 <TD bgcolor=’#E6EFF8’> </TD>
</TR>
<!-- 11st line -->
<TR>
 <! bottom border line>
 <TD bgcolor=’#4D7AB1’ WIDTH=25%> </TD>
 <TD bgcolor=’#83A4CD’ WIDTH=25%> </TD>
 <TD bgcolor=’#B6C7E1’ WIDTH=25%> </TD>
 <TD bgcolor=’#E6EFF8’ WIDTH=25%> </TD>
 <TD bgcolor=’#E6EFF8’> </TD>
 <TD bgcolor=’#E6EFF8’> </TD>
</TR>
</TABLE>

Restrictions
For a real web application, nobody would choose the layout above. There are some restrictions that should be
considered if not only an Intranet with fixed defined HTTP browser and settings are used. The real world looks
different.

Colors

Colors should be used from the so called "Netscape Color Cube" (see the figure below).

These are the 216 colors that the Netscape browser uses in its palette. By using these colors on your web pages,
you can be assured that the viewer will see your images exactly as you intended. If you do not use the color cube,
Netscape will use it for you.

Even if Internet Explorer with 256 colors is used, these colors work well. Other colors will lead to the same
effects.
This happens not only to fix coded color setting inside your HTML, the same effect can be seen with pictures.

69Copyright © Software AG 2002

RestrictionsWeb Interface HTML Design

HTML 4.0 and Cascading Style Sheets

Cascading Style Sheets (CSS) and HTML 4.0 are the current standard of HTML. But only HTML 3.2 is realy
browser independent. With Internet Explorer 4 and Netscape 4, CSS is implemented, but there are differences.

Fixed Table Size

Our page uses fixed table cell sizes to display the background pictures in the right way. However, every browser
allows you to set up the size of the font used.

It is very common that pages only look good if a specific font size is used. Other fonts lead to strange effects
beginning with text that is displayed at the wrong column and leads to strange looking background pictures.

A table will always resize to display the text inside, regardless of whether a size is given. If more space is
needed, the space is taken.

Therefore it is better to set up table cell only with percent settings.

Copyright © Software AG 200270

Web Interface HTML DesignHTML 4.0 and Cascading Style Sheets

Chosen Layout
The new layout, realized with a table, looks like the figure below.

Input Layout
It is necessary to return input data from the HTML page. Forms enable you to send data back to the HTTP
server. Input elements are INPUT, TEXTAREA and SELECT (HTML 3.2). A form should have at least one
submit button.
The main input screen to select a range of employees may look like this:

The HTML looks like this:

The code shows that it is only possible to specify one URL to be called. However, the specification is supposed
to call different selections. One way to do this is to add more than one form:

71Copyright © Software AG 2002

Chosen LayoutWeb Interface HTML Design

Another possibility is to call only one program, some kind of dispatcher. This program calls the subprogram
needed. The dispatching can be done by the value of the submit button. Therefore, the submit button must have a
name, e.g. "TODO". The form then looks like the figure below:

If we now combine the given layout with our form, our main page will look like the figure below:

Using the submit buttons does not lead to a harmonious display, because the appearance of the submit buttons
cannot be changed.
However, submit buttons can be replaced by pictures, as in the figure below:

However, the pictures do not look like submit buttons, or links to another object. Will they do something?

It would be better if a menu could be created with changing images. This cannot be done by using only HTML.
If JavaScript can be used, it is possible to change the appearance of a picture if the mouse is over it:

script language="JavaScript" type="text/javascript" !-- function imgAct(imgName) { document[imgName].src =
"/pictures/nww_" + imgName + "on.gif"; } function imgInact(imgName) { document[imgName].src =
"/pictures/nww_" + imgName + ".gif"; } //-- [FrontPage HTML Markup Component][FrontPage
Component]

Copyright © Software AG 200272

Web Interface HTML DesignInput Layout

See the code of the JavaScript:

<script language=’JavaScript’><!--
function imgAct(imgName)
{
 document[imgName].src = "/pictures/nww_" + imgName + "on.gif";
}
function imgInact(imgName)
{
 document[imgName].src = "/pictures/nww_" + imgName + ".gif";
}
//--></script>
<img alt=’Browse’
name=’brow’ src=’/pictures/nww_brow.gif’ border=’0’ width=’129’ height=’21’>

There are two parts:

the functions changing the source of an image and
the call of the different functions.

If scripting is not allowed, only the up picture can be seen. This is because every browser ignores unknown tags.
The coding cannot be seen, because it is hidden inside a comment. The closing HTML comment has to start with
an JavaScript comment!

If scripting is allowed, the script is loaded. It is necessary to name the img tag to access this image later on. If
now the mouse is dragged over the image, the onMouseOver event occurs and the function imgAct("brow") is
executed. This function now replaces the source of the image "brow" with the image "/pictures/nww_" + "brow"
+ "on.gif". If the mouse leaves the image, an onMouseOut event is sent and imgInact("brow") is executed. Now
the picture "/pictures/nww_" + "brow" + "on.gif" will be loaded.

As the example shows, two pictures for the different state of the button are needed. The name of the image is
generated from the img tag name and an individual extension.

One question remains: How does this work together with a form?

73Copyright © Software AG 2002

Input LayoutWeb Interface HTML Design

JavaScript offers the possibility of calling a method that behaves like a pressed submit button. An anchor can call
a function instead of linking to to another URL. Using this leads to the following script:

<script language=’JavaScript’><!--
function goon()
{
 document.FMENU.submit();
}
function imgAct(imgName)
{
 document[imgName].src = "/pictures/nww_" + imgName + "on.gif";
}
function imgInact(imgName)
{
 document[imgName].src = "/pictures/nww_" + imgName + ".gif";
}
//--></SCRIPT>
<form method=’get’ action=’/cgi-bin/nwwcgi.exe/sysweb/nat-env ’ name=’FMENU’>

</form>

Again the form tag has to be named to access later. The href attribute of the anchor now calls the function goon()
which calls the submit() method of the form tag.

Copyright © Software AG 200274

Web Interface HTML DesignInput Layout

Now putting everything together, our layout for the main page looks like this:

75Copyright © Software AG 2002

Input LayoutWeb Interface HTML Design

Functional Parts

How to Use Frames
It is easy to set up frames, but frames cannot be bookmarked. It is possible to bookmark subpages of the frame,
but you cannot start up the whole frame again.

Instead of frames, tables can be used for page formatting. The different parts of a page can be generated by
separate subprograms. The resulting page is usually compatible with the frame-based page.

How to Use JavaScript
Using JavaScript on your page can be very useful. Use special script files and link these files to your application
with the "SRC" attribute of the script tag.

Scripting on mainframes can cause specific problems. The character [] {} may not defined in the EBCDIC
character set used or cannot be typed on the terminal used.

If you use the Natural Web Server Extensions, a special feature can translate the &#..; equivalent back to the
characters before sending to the HTTP server.

Do not forget to specify a <NOSCRIPT> section for older browsers.
If scripting is not allowed, you may not allow the user to go on or you may specify alternative pages.

Copyright © Software AG 200276

Web Interface HTML DesignFunctional Parts

Web Interface Program Design
The design of the web application is restricted by the web technologies used. It is possible to find this or that
work around but this is never a general solution. Using another browser or different versions of the same browser
can have significant effects. Setting up browser security to a different level can change the application’s
environment.

This section covers the following topics:

Data Input
Global Data
Dispatch
External Data
Modular Pages
Choosen Program Design

Data Input
All data given by the HTTP server and web browser must be treated as unchecked data! Nobody can force a user
to use scripting, given colors or other settings.

The application has to check all input data again for consistency, even if the calling page contains scripts for
validation. Not only the value of the given data is unchecked, even the data format and length is insecure. An
HTML page always can be copied with "Save as" and then modified for your own needs.

Use the Natural IS Option for checking format and length of values. The example below shows reading of the
value START followed by checking whether the value is an N5 value.

 PERFORM W3READ-ENVIRONMENT "START" "P" W3VALUE W3MAX
 IF W3MAX GT 0 THEN
 IF W3VALUE-A5 IS (N5) THEN
 #DEMO-PARM.#START:= VAL(W3VALUE-A5)
 ELSE
 #DEMO-PARM.#START:= 1
 END-IF
 ELSE
 #DEMO-PARM.#START:= 1
 END-IF

Global Data
With your web application, you have different ways of saving global data.

1. Cookies

Cookies are data saved with your local browser. The number of cookies is limited. Use only one cookie for your
whole application, to save different data needed for your application.

77Copyright © Software AG 2002

Web Interface Program DesignWeb Interface Program Design

Cookies are delivered with the variable HTTP_COOKIE. The Natural Web Server Extension used has to be
advised to pass cookies to your application. Your initialization file must contain the following line:

 ENV=HTTP_COOKIE

Inside your program, cookies can be read with the normal functionality:

 PERFORM W3READ-ENVIRONMENT "HTTP_COOKIE" ’S’ W3VALUE W3MAX
 IF W3MAX > 0 THEN
 #MY-COOKIE := W3VALUE
 ELSE
 RESET #MY-COOKIE
 END-IF

Add your cookie, which has to be set with an expire time, at the return page:

 ADD 1 TO #NUMBER
 COMPRESS "COUNTER=" #NUMBER ";" INTO COOKIE-NAME LEAVING NO
 COMPRESS ’Set-Cookie:’ COOKIE-NAME
 ’expires=Wednesday, 09-Nov-99 23:12:40 GMT’ ##HTTP_NEWLINE_END
 INTO W3VALUE
 PERFORM W3HTTP W3VALUE

2. Hidden Input Fields and Additional URL Parameters

If your page contains a form, additional data can be saved as a hidden input field. This data will be sent if the
form is submitted, but cannot be seen when the HTML page is displayed. If not form tag is used, it is possible to
add this parameter direct to the URL of the next pages called.

Setting of "global data" using hidden input fields inside a form:

 PERFORM H3-INPUT "H" "START" #START 0 0
 PERFORM H3-INPUT "H" "FROM" #FROM 0 0
 PERFORM H3-INPUT "H" "TO" #TO 0 0

3. Data Saved on the Server Side (in a Database)

It is very common to save data for a given user at the application database. This is only useful if password saved
applications are used. The username then can be used to load specific data out of the database.

Dispatch
For many applications, it is common that for a given input, different actions can be called. However, submitting
a form tag can only call one program.

Copyright © Software AG 200278

Web Interface Program DesignDispatch

One way of solving the problem is using scripting and changing the URL of the called program depending on the
submit button pressed.

A second way is to create one dispatcher program that evaluates which program should be called, depending on
the pressed submit button.

A combination of both can also be done. Then the submit can be realized by a normal link that starts the submit.
The different ways can be selected by changing the value of a hidden input field.

External Data
If pictures or other external static data from the server is needed, use a dynamically created URL instead of a
static one. Use an environment variable, set by the Natural Web Server Extension to specify a non-standard path.

Setup your own variable for pictures in the Natural Web Server Extension initialization file:

 SETENV=pictures:=/gif

79Copyright © Software AG 2002

External DataWeb Interface Program Design

Modular Pages
For a complex application, it is useful to define subroutines for special parts of the generated page.

Page design split input: head, body, menu ...
Use external subroutines.

Example of a modular generation page:

 * Check given parameter of mandatory value is set.
 IF #DEMO-PARM.#PERSON EQ " " THEN
 #DEMO-PARM.#MSG := ’Please Select a person!’
 INCLUDE D4-BACK
 END-IF
 *
 * Specify the name of this page
 #DEMO-PARM.#TODO := "SHOW"
 #DEMO-PARM.#CAPTION := ’Show’
 *
 * Define the Navigationbar items to be shown
 #DEMO-MENU.#ME := "T" /* Menu
 #DEMO-MENU.#CH := "T" /* Change
 #DEMO-MENU.#DE := "T" /* Delete
 *
 * Define the Navigationbar back to Select/Browse
 PERFORM D4-BACKB #DEMO-MENU #DEMO-PARM
 *
 * Generate Start of HTML page and Navigationbar
 PERFORM D4-START #DEMO-MENU #DEMO-PARM
 *
 * add global ID as hidden input field
 PERFORM D4-HPERS #DEMO-MENU #DEMO-PARM
 *
 * Read Employee data from the Database
 CALLNAT "D4EMSHOW" #DEMO-PARM.#PERSON #OUT-P-NAME
 #OUT-P-FIRST-NAME #OUT-P-BIRTH #OUT-P-SEX
 #OUT-P-DEPT #OUT-P-CITY #OUT-P-AREA-CODE
 #OUT-P-ZIP #OUT-P-COUNTRY #OUT-P-PHONE
 #OUT-P-PICTURE #DEMO-PARM.#MSG
 *
 * Generate HTML output for this page
 INCLUDE D4-DISPL
 *
 * Generate end of HTML page
 PERFORM D4-END #DEMO-MENU #DEMO-PARM
 END-SUBROUTINE

Copyright © Software AG 200280

Web Interface Program DesignModular Pages

Chosen Program Design
The application uses one startup page and one dispatch page. These pages contain a form which contains all
necessary input fields. Data will be passed as hidden fields from one page to another. The different functions of
the page will be selected by the value of a specific field. The value will be set via a JavaScript program used on
this page. This makes it possible to create a cursor-sensitive selection menu.

The main programs called for every page are the generation of the page head, the menu and the page body. The
page head and body contain the layout information for the table structure used on the page. Data given from the
previous page will be read to a parameter data area that will be passed to all subroutines used. This parameter
data area contains an array to set up the relevant parts of the menu.

The layout of the pages is encapsulated with copycode if the layout is used more than once. Access to the
database is separated to separate subprograms.

External data as gifs and the JavaScript source can be reallocated using variables defined in the Natural Web
Server Extension.

Functional Parts

Main Programs

D4ENTER, Subprogram
entrance tunnel

D4MENU, Subprogram
main menu

D4CHOOSE, Subprogram
dispatcher program

Database Access

D4EMBROW Subroutine
browse

D4EMCHAN Subprogram
change

D4EMDEL, Subprogram
delete

D4EMLIST, Subroutine
list

D4EMNEW, Subprogram
add new

D4EMSEL, Subroutine
select

D4EMSHOW, Subprogram
show

81Copyright © Software AG 2002

Chosen Program DesignWeb Interface Program Design

General HTML Layout

D4-BACK, Copycode
relocate if nothing is selected

D4-BACKB, Subroutine
back button to return correct to list/browse

D4-DISPL, Copycode
Display Screen for Show/Delete

D4-END, Subroutine
generate the "end" of a demo HTML page

D4-HGLOB, Subroutine
write "global" variables as START, FROM, TO, OT, STATUS to the HTML page

D4-HPERS, Subroutine
write the "global" variable Person "ID" to the HTML page

D4-IPAGE, Copycode
add a person

D4-MENUB, Subroutine
generate the menu bar for the demo HTML page

D4-MODIF, Copycode
input screen for change/new

D4-MSG, Subroutine
generate the message line

D4-PARM, Parameter Data Area
cross application data

D4-RGLOB, Subroutine
read variables send by the previous page

D4-START, Subroutine
generate the "start" of a demo HTML page

Sub HTML-Pages

D4BROWSE, Subroutine
browse persons

D4CHANGE, Subroutine
change a person

D4DELETE, Subroutine
delete a person

D4LIST, Subroutine
list persons

D4NEW, Subroutine
add a person

D4SELECT, Subroutine
select a person

D4SHOW, Subroutine
show a person

Copyright © Software AG 200282

Web Interface Program DesignFunctional Parts

Special Purpose

D4NOTIMP, Text
static page for not implemented

D4TEMPEL, Subprogram
display static pages saved as Natural text members

83Copyright © Software AG 2002

Functional PartsWeb Interface Program Design

Web Interface Implementation
This section covers the following topics:

HTML to Natural
Reuse of Global Parts
Use of w3text versus w3html
Increased Performance using w3text / w3html

HTML to Natural
With common HTML editors, it is very easy to specify an HTML page layout. Now, using Natural Web
Interface, this layout must be transferred to Natural.

This can be done with a utility called HTML to Natural that is delivered with the Windows NT platform. This
utility allows you to generate a Natural subprogram, containing all necessary interfaces, that will generate the
specified page.

Reuse of Global Parts
Some parts of the application need to be replicated on every page. Use Natural copycode or external subroutines
for partial generation.

Use of w3text versus w3html
If your text does not contain special characters or the string contains HTML tags, use W3TEXT. Otherwise, you
can use W3HTML to translate unsaved characters, such as < > & ? into an HTML-conform equivalent.

The same happens to Natural characters, such as the German ü, ä and ö or special Spanish and French characters,
such as é, è and ê.

The translation of these characters decreases the speed of the application.

Increased Performance using w3text/w3html
As Natural only works with fixed length strings, every string is filled with spaces. For HTML, spaces are not
relevant, beause if more the one white space occurs, it will be compressed to only one. Returning pages with a
lot of spaces does not alter the result of the rendered HTML page. But the numbers of bytes to be transferred
increase.

The output routines of the Web Interface will strip all trailing blanks before sending the string back. Therefore
the string has to be scanned beginning from the end of the string and then the last space has to be found.

To increase the speed of your application, use long strings and/or terminate the string with the string defined at
the variables ##HTTP_END and ##HTTP_NEWLINE_END from the parameter data area W3CONST.

Copyright © Software AG 200284

Web Interface ImplementationWeb Interface Implementation

Web Interface Fine Tuning
This section covers the Entrance Tunnel of the Web Interface.

Entrance Tunnel
If your program needs specific versions of HTML browser, or JavaScript as prerequisite, do not let the user run
on an incomplete page or get error messages.

A common technique for browser-specific checks is a so-called entrance tunnel. This is the first page of your
application. The page can show the logo of your application or just a link to your application. Now the next
pages can be browser-dependent, or you may not allow the user to enter:

The XML Company

Sorry, your browser does not
support JavaScript.
JavaScript is essential to run this
application.

There are two places to check such specifics:

Server-side checking at program generation of your dynamic page.
Browser-side scripting.

The version of an HTML browser used can be checked if the variable
HTTP_USER_AGENT
is read.

85Copyright © Software AG 2002

Web Interface Fine TuningWeb Interface Fine Tuning

With the Natural Web Interface, use the following lines of code:

PERFORM W3READ-ENVIRONMENT H3NAME H3SERVER H3VALUE H3VALUE-MAX
*
IS-IE4 := FALSE
IS-NAV4 := FALSE
*
IF H3VALUE-MAX GT 0 THEN
 EXAMINE H3VALUE FOR "Mozilla" GIVING INDEX II
 IF II EQ 1 THEN
 EXAMINE H3VALUE FOR "MSIE" GIVING INDEX IJ
 IF IJ GT 0 THEN
 IS-IE := TRUE
 ELSE
 IS-NAV := TRUE
 END-IF
 END-IF
END-IF
*
* Browser Dependent Coding
* only if Navigator is used.
IF IS-NAV EQ TRUE THEN
...

The following value identifies a Microsoft Internet Explorer 4.01:
Mozilla/4.0 (compatible; MSIE 4.01; Windows NT)

With the following value a Netscape Communicator 4.5 will respond:
Mozilla/4.5 [en] (WinNT; I) .

The same check can be done with an Java program on the client side.

// Check for used Browser
function Is ()
{ // convert all characters to lowercase to simplify testing
var agt=navigator.userAgent.toLowerCase()
// *** BROWSER VERSION ***
 this.major = parseInt(navigator.appVersion) ;
 this.nav = ((agt.indexOf(’mozilla’)!=-1) && ((agt.indexOf(’spoofer’)==-1)
&& (agt.indexOf(’compatible’) == -1)))
 this.ie = (agt.indexOf("msie") != -1)
}
// Browser Dependent Coding
// only if Navigator is used.
IF is.nav { ...

Copyright © Software AG 200286

Web Interface Fine TuningEntrance Tunnel

If your application should not look the same all the time, you can alter your entrance tunnel:

The XML Company

or:

The XML Company

87Copyright © Software AG 2002

Entrance TunnelWeb Interface Fine Tuning

Natural Web Server Extensions - Overview
This document comprises the following sections:

Introduction
First you can get an insight into the working and
installation procedures of the Natural Web Server
Extensions.

Initialization File
Here we describe parameters and variables of the
initialization file.

Configuring the Natural Web Interface
Here you can find information needed to configure the
Natural Web Interface.

Error Messages Here we list likely errors.

Copyright © Software AG 200288

Natural Web Server Extensions - OverviewNatural Web Server Extensions - Overview

Natural Web Server Extensions -
Introduction
This section covers the following topics:

General Information
Installation - RPC / DCOM
Transformations
Variables
Error Logging and Messages
Calling Programs

General Information
The Natural Web Server Extensions part is basically a program called from an HTTP server. The Natural Web
Server Extensions takes parameters, given by the HTTP server, repackages them and performs a broker RPC or a
DCOM call to the requested Natural program using a standard parameter data area. Calls are transmitted by the
EntireX Broker or DCOM.

As of Version 4.1, three HTTP Server interfaces will be supported:

Common Gateway Interface (CGI), for supported server and platforms,
Internet Server Application Programming Interface (ISAPI) only for Microsoft Internet Information Server
on Windows NT.
Netscape Server Application Programming Interface (NSAPI) only for Netscape FastTrack Server.

Installation - RPC / DCOM
Each Natural Web Server Extension consists of two files:

an executable and
an initialization file.

These files can be renamed. The initialization file has the same name as the executable file, but with the
extension .ini. The two files must be in the same directory.

Copy the files to appropriate locations of the web server, or parameterize the web server so that it accesses the
files direct.

89Copyright © Software AG 2002

Natural Web Server Extensions - IntroductionNatural Web Server Extensions - Introduction

 RPC DCOM

CGI
nwwcgi.exe
nwwcgi.ini

nwwdcgi.exe
nwwdcgi.ini

ISAPI
nwwisapi.dll
nwwisapi.ini

nwwdisapi.dll
nwwdisapi.ini

NSAPI
nwwnsapi.dll
nww/nsapi

nwwdnsapi.dll
nwwd/nsapi

Parameters

RPC_ETB_ID_NAME = broker name
RPC_SERVER_NAME = service name
NWW_INOUT_LENGTH = amount of
transferred data

NWW_INOUT_LENGTH = amount of
transferred data

Note:
Some HTTP servers allow executable files without the extension .exe. This means that executables with and
without the .exe extension are possible.

Transformations
Parameters sent by the HTTP server via the interface are given by means of specific variables or a transfer area.
User data contained in a transfer area or the variable QUERY_STRING will be recognized and preprocessed. In
particular, the encoding of the URL will be undone.

The design of the Natural Web Server Extensions allows only the transmission of non-binary data, because the
data is converted from ASCII to EBCDIC and vice-versa if needed.

Variables
Only variables specified on your HTML page will be automatically transferred to your called program. Other
variables available from the HTTP server must be specified.

Each variable to be transferred needs an entry in the initialization file.

It is also possible to add variables that will be treated as system environment variables.

Error Logging and Messages
You can set up your own error screen with a specific HTML page. Variables of the environment can be specified
in this error page.

The page last transferred can be copied to a file and errors can be written to an error log file.

Calling Programs
To call a program from your browser, you have to specify a uniform resource locator (URL) which contains the
name of you HTTP server and the name of a cgi-enabled directory, where you have copied the files of the
Natural Web Server Extension. Then you have to specify the Natural Web Server Extension program name
followed by a Natural library and a subprogram name.

Copyright © Software AG 200290

Natural Web Server Extensions - IntroductionTransformations

 URL for RPC URL for DCOM

CGI http:// server-name/ cgi-library/nwwcgi.exe/ your-library/ your-program http:// server-name/ cgi-library/nwwdcgi.exe/ your-library/ your-program

ISAPI http:// server-name/ cgi-library/nwwisapi.dll/ your-library/ your-program http:// server-name/ cgi-library/nwwdisapi.dll/ your-library/ your-program

NSAPI http:// server-name/nww/nsapi/ your-library/ your-program http:// server-name/nwwd/nsapi/ your-library/ your-program

91Copyright © Software AG 2002

Calling ProgramsNatural Web Server Extensions - Introduction

Natural Web Server Extensions -
Initialization File
This section covers the following topics:

General Information
RPC Parameters
DCOM Parameters
Natural Web Server Extension Settings
HTTP Server Variables
Additional Variables
Error Templates

General Information
The Natural Web Server Extension takes runtime parameters from an initialization file. The executable file looks
for an initialization file with the same name and extension .ini in the current working directory.

The names of the variables are not case sensitive, as all variables used on the WWW. Variables are limited to 72
characters; blanks are recognized as normal characters, so parameters can be specified multiple times.

RPC Parameters
These parameters are needed for communication with EntireX RPC.

Parameter Description

RPC_CLASS_NAME Defines the class of the service used.
Always use RPC.

RPC_ETB_ID_NAME Name of the EntireX Broker to be called.

RPC_NO_LOGON Logon to the library specified at the URL. Default is 0.

RPC_SERVER_NAME Name of the called Broker Service.

RPC_SERVICE_NAME Defines the called service.
Always use CALLNAT.

RPC_TIME_OUT Defines the timeout for the call.
Default is 7000.

Copyright © Software AG 200292

Natural Web Server Extensions - Initialization FileNatural Web Server Extensions - Initialization File

DCOM Parameters
These parameters are needed for the communication with DCOM.

Parameter Description

DCOM_SERVER_NAME Name of the called DCOM Server.

(Specify only if the Natural Server is not running on the same computer.)

Natural Web Server Extension Settings
This group of parameters define the settings of the Natural Web Server Extension.

Parameter Description

ECHO_ENVIRONMENT This parameter is only useful if the default error page is used. If this
parameter is specified and set to 1, equal to the $NWW_ENVIRONMENT
of the user-defined error page, all environment variables will be written as
comment lines to the error page.

ERROR_LOG_FILE Defines a file for error logging. If this parameter is not specified, the log is
disabled.
Each log entry has the same layout and can easily be located in the
error-log file by searching for the string the cgi is named.

Sample Log Entry:
[Thu Jun 28 10:51:19 2001] nwwcgi.exe 04.02.00
Win32: processing of /cgi-bin/nwwcgi.exe failed
for Lib:{library} Sub:{subprogram}
Path:{path_info}, for natweb.software-ag.de reason
NWW0001 No subprogram and library specified.

ERROR_STDERR If this parameter is set to 1, all errors are logged via stderr. The actual
location of the log file depends on the HTTP server used and the way it has
been parameterized. See also ERROR_LOG_FILE. Some HTTP servers do
not support the use of stderr.

ERROR_TEMPLATE Defines an error template file. If this parameter is not specified, a default
error page will be generated. See Error Templates below.

NWW_INOUT_LENGTH

Defines the amount of the transferred data. This parameter defines the
dimension of the parameter Out_Page of the IDL file.

Used IDL File:

DEFINE DATA PARAMETER
1 Version-Nr (A15) In
1 Log-Time (A30) In
1 Out_Page (A RPC_INOUT_FORMAT
1:RPC_INOUT_LENGTH) In Out
1 Out_Page_Count(I04) In Out
1 Result (I04) Out END-DEFINE

NWW_PASSWORD Defines the password for the user ID.

93Copyright © Software AG 2002

DCOM ParametersNatural Web Server Extensions - Initialization File

NWW_PATH_INFO To test the Natural Web Server Extension in stand-alone mode (test
environment), set this parameter to specify the library and program name. If
you use the Natural Web Server Extension in the regular mode (with
HTTP-Server) you must disable this parameter.

Example:
NWW_PATH_INFO=/syshtml/nat-env

NWW_PATHINFO_PREFIX This parameter can only be used in conjunction with the ISAPI interface. If
the interface is defined as application mapping (e.g. for directory nww and
the extension .nww), the PATH_INFO variable delivers a prefixed URL
with directory and the file name (e.g./nww/my.nww/sysweb/nat-env). This
prefix (/nww/my.nww) has to be removed. Use this parameter to the
specified used prefix.
Example:
NWW_PATHINFO_PREFIX=/nww/my.nww

NWW_OUT_CSS

Replaces the strings by the specific characters:

 String Character

	 -->| (Tab)

@ @

[[

\ \

]]

{ {

| /

} }

This setting can be useful if cascading style sheets are used and the RPC
server is placed on a computer which uses the EBCDIC code. Default is 0.
Use 1 to activate.

NWW_OUT_CSS_TRANSLATE

Replaces the characters by the specific hex values :
(Default value for ASCII)

 Character Hex value

-->| (Tab) 09

@ 40

[5B

\ 5C

] 5D

{ 7B

| 7C

} 7D

Example for english EBCDIC (codepage 37):
(tab), @, [, \,], {, |, }
NWW_OUT_CSS_TRANSLATE=05,7C,AD,61,BD,C0,4F, D0

NWW_USER_ID User ID used for the RPC.

NWW_RETRY
If a 3009 error (NAT3009 Transaction aborted) occurs, this parameter
defines how often the program will be called again.
Default is 3.

Copyright © Software AG 200294

Natural Web Server Extensions - Initialization FileNatural Web Server Extension Settings

INI_RELOAD
Load initialization file only once during the first call. Not for CGI interface.
Default is 1.

REMOVE_USER_DOMAIN IIS server on NT deliver as REMOTE_USER the username prefixed with
the name of the domain the user belongs to. Natural can only handle user
names with a maximum length of 8 characters. If USE_REMOTE_USER is
set to 1 and REMOVE_USER_DOMAIN is set also to 1 the used domain
name from the given REMOTE_USER name is removed. This means the
information after the last "/" is delivered to Natural as the user name .

TRACE_FILE If a file name is specified, the last pages returned to the HTTP server will
be saved to this file. If this parameter is specified, no output is written.

USE_REMOTE_USER
Replace the RPC_USER_ID with the given REMOTE_USER. Set to 1 to
activate it.

95Copyright © Software AG 2002

Natural Web Server Extension SettingsNatural Web Server Extensions - Initialization File

HTTP Server Variables
All HTTP server variables to be transferred to the called program must be specified. To do this, specify the
variable ENV with the name of the variable to be transferred. The ENV variable can be specified multiple times.

Some useful variables:
ENV=REMOTE_HOST
ENV=REMOTE_ADDR
ENV=SCRIPT_NAME
ENV=HTTP_REFERER
ENV=HTTP_HOST
ENV=HTTP_COOKIE

For more information on variables, see http://hoohoo.ncsa.uiuc.edu/cgi/env.html.

Additional Variables
With the Natural Web Server Extension, it is additionally possible to transfer variables to the called program. To
do this, specify the variable SETENV with the name of the variable followed by := and the value to be
transferred. The SETENV variable can be specified multiple times.

Example:
SETENV=PICTURES:=/pictures

Copyright © Software AG 200296

Natural Web Server Extensions - Initialization FileHTTP Server Variables

http://hoohoo.ncsa.uiuc.edu/cgi/env.html

Error Templates

Default Error Report

If parameter ERROR TEMPLATE is not specified, a default is used.

This is an example of a default error report:

nwwcgi.exe Error Report
Natural Web Interface NWW5100c Win32

The following error has been logged in the error log file:

/cgi-bin/nwwcgi.exe: processing of subprogram/method NAT-INFO
at library/class SYSWEB failed.

reason: NWW0011 ERX error 80010014 occurred.

 Severity = Error
 Facility = 65536
 Returncode = 20
 Subfacility = 3
 Location = 0

 Message:
 ERX_E_SERVICE_NOT_AVAILABLE - ETB error code 02150148

for: pcnatweb.software-ag.de:80

path: /sysweb/nat-info

NWW Error - Fri Mar 15 10:20:28 2002 Natural

97Copyright © Software AG 2002

Error TemplatesNatural Web Server Extensions - Initialization File

Specifying your own Error Template

You can also specify your own error template. The error template is basically a normal return page. As for all
return pages, the content type must be set. The only addition is the replacement of variables. To do this, specify
the environment variable beginning with a $ sign. See Example of an Error Template below.

The following "environment variables" are additionally available for error templates:

Environment Variable Description

NWW_LOGTIME Time and date the error will be logged if an ERROR_LOG_FILE is specified.

NWW_VERSION Version number of the Natural Web Server Extension.

NWW_RUN Name of the program that was called.

NWW_ERROR Number of the error that has occurred.

NWW_LIBRARY
NWW_CLASS

Name of the library/class that was called.

NWW_SUBPROGRAM
NWW_METHOD

Name of the subprogram/method that was called.

NWW_ENVIRONMENT All environment variables will be written as comment lines to the error page.

Copyright © Software AG 200298

Natural Web Server Extensions - Initialization FileSpecifying your own Error Template

Example of an Error Template

 <!DOCTYPE HTML PUBLIC ’-//W3C//DTD HTML 3.2//EN’>
 <HTML>
 <HEAD>
 <META http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
 <TITLE>$NWW_RUN Error Report - $NWW_LOGTIME</TITLE>
 </HEAD>
 <BODY bgcolor="#FFFFFF" text="#000000">
 <TABLE border="0" width="100%" cellspacing="0" cellpadding="5">
 <TR bgcolor="#CCFFCC">
 <TD><H2 align="center">
 $NWW_RUN Error Report
 </H2>
 <P align="center">
 <I><SMALL>Natural Web Server Extension Interface: $NWW_VERSION</SMALL></I></TD>
 </TR>
 <TR>
 <TD>The following error has been logged in the error log file:</TD>
 </TR>
 </TABLE>
 <TABLE border="0" width="100%" cellspacing="15" cellpadding="0">
 <TR valign="top">
 <TD align="right">$SCRIPT_NAME:</TD>
 <TD><TT>processing of subprogram/method $RPC_SUBPROGRAM

 at library/class $RPC_LIBRARY failed.</TT></TD>
 </TR>
 <TR valign="top">
 <TD align="right">reason:</TD>
 <TD><PRE>$RPC_ERROR
 </PRE>
 </TD>
 </TR>
 <TR valign="top">
 <TD align="right">for:</TD>
 <TD><TT>$SERVER_NAME:$SERVER_PORT</TT></TD>
 </TR>
 <TR valign="top">
 <TD align="right">path:</TD>
 <TD><TT>$PATH_INFO</TT></TD>
 </TR>
 </TABLE>
 <TABLE border="0" width="100%" cellspacing="0" cellpadding="5">
 <TR bgcolor="#CCFFCC">
 <TD>NWW Error Template - $NWW_LOGTIME</TD>
 <TD align="right">Natural</TD>
 </TR>
 </TABLE>
 <P>
 $NWW_ENVIRONMENT
 </BODY></HTML>

99Copyright © Software AG 2002

Example of an Error TemplateNatural Web Server Extensions - Initialization File

Natural Web Server Extensions - Error
Messages
This section lists error messages you may receive when working with the Natural Web Server Extensions.

Error
Number

Error Message Description User Programmer Administrator

NWW0001 No library and
subprogram specified.

The specified URL is not correct.
Names of library and subprogram
are missing.

Correct
the URL.

None. None.

NWW0002 No library specified. The specified URL is not correct. Correct
the URL.

None. None.

NWW0003 File ... not found. The initialization file for your
adapter cannot be found.

None. None. Check your installation.

NWW0004 No subprogram
specified.

The specified URL is not correct. Correct
the URL.

None. None.

NWW0010 RPC call failed. EntireX RPC cannot be initialized. None. None. Check installation.

NWW0011 ERX error ... occurred ... Internal ERX error. See EntireX
documentation for further
information.
If the error contains the following
part:
Message:
...
Program = NATSRVD
...
Error = 00082
...

The called program does not work.

Correct
URL.

Check and stow
your program.

Check installation.

NWW0012 ERX error register. EntireX RPC Service cannot be
initialized.

None. None. Check configuration.

NWW0013 erx.dll cannot be loaded.
Subcode:

EntireX erx.dll not found. None. None. Check installation.

NWW0014 ERX logon failed. EntireX logon cannot be performed. Check
User-ID,
Password

Check installation
file for Check
User-ID, Password.

Check installation.

NWW0015 ERX logoff failed. Logoff form EntireX failed. None. None. Contact Software AG.

NWW0033 File ... not found (Error:
...).

The initialization file for your
adapter cannot be found.

None. None. Check your obj.conf setup
for NSAPI.

NWW0034 NWW_USER_ID too
long.

User ID only with a maximum of 8
characters allowed.

None. None. Specify only user IDs with
8 characters or fewer, even
if other system will allow
more.

NWW0035 NWW_PASSWORD
too long.

Passwords only with a maximum of
8 characters allowed.

None. None. Specify only (user-)
passwords with
8 characters or fewer, even
if other system will allow
more.

NWW0036 Natural Library Name
too long.

Natural allows only library names
up to 8 characters.

Check
URL.

Check URL
specification.

None.

NWW0037 Natural Subprogram
Name too long.

Natural allows only Subprogram
names up to 8 characters.

Check
URL.

Check URL
specification.

None.

Copyright © Software AG 2002100

Natural Web Server Extensions - Error MessagesNatural Web Server Extensions - Error Messages

NWW0099 CONTENT_TYPE: ... is
not supported.

Only data with CONTENT_TYPE =
application/x-www-form-urlencoded
is supported.

None. Do not use the
attribute
ENCTYPE at your
FORM tag.

None.

NWW0100 RPC_INOUT_LENGTH
is greater then 30000.

The output returned to the HTTP
server is limited to restrictions of
Natural RPC.

None. None. Change configuration

NWW0200 No Header specified. Each page needs a header section at
the return page.

None. Each page should
contain a
CONTENT_TYPE.
The header section
has to be separated
from the data by a
blank line.

None.

NWW0201 Page contains no Data. Every return page has to contain
data.

None. Correct the
program.

None.

NWW1001 No class and method
specified.

The specified URL is not correct.
Names of class and method are
missing.

Correct
the URL.

None. None.

NWW1002 No class specified. The specified URL is not correct. Correct
the URL.

None. None.

NWW1004 No method specified. The specified URL is not correct. Correct
the URL.

None. None.

NWW1005 ASCII Unicode
conversion failed.

The transferred data has to be
converted.

None. None. Contact Software AG.

NWW1006 Unicode ASCII
conversion failed.

The transferred data has to be
converted.

None. None. Contact Software AG.

NWW1007 Method ... not found. A specified method cannot be
called.

Correct
the URL.

Add method to
your class.

Check your registry
configuration.

NWW1008 Class ... not found. A specified class cannot be called. Correct
the URL.

Create class and
register with
REGISTER *

Check your registry
configuration.

NWW1009 Initialization of Class ...
failed.

A specified class cannot be called. Correct
the URL.

Create class and
register with
REGISTER *

Check your registry
configuration.

NWW1010 DCOM call failed, error
....

The call to DCOM failed. None. None. Check your configuration.

NWW1011 DCOM error ... occurred
...

Internal DCOM error. See DCOM
documentation for further
information.

Correct
the URL.

Correct the
program.

Correct the
Congiguration/Installation.

NWW1012 DCOM initalisation
failed.

The initial call to DCOM failed. None. None. Correct the
Configuration/Installation.

NWW1013 DCOM release failed. The deletion of class and close of
DCOM failed.

None. None. Correct the
Configuration/Installation.

NWW1036 DCOM Class Name too
long.

Natural allows only library names
up to 32 characters.

Check
the URL.

Check the URL
specification.

None.

101Copyright © Software AG 2002

Natural Web Server Extensions - Error MessagesNatural Web Server Extensions - Error Messages

NWW1037 DCOM Method Name
too long.

Natural allows only subprogram
names up to 32 characters.

Check
the URL.

Check the URL
specification.

None.

Copyright © Software AG 2002102

Natural Web Server Extensions - Error MessagesNatural Web Server Extensions - Error Messages

	Cover Page
	page 2

	Table of Contents
	Natural Web Interface
	Introducing the Natural Web Interface
	What is the Natural Web Interface
	Architecture
	Communication Using Natural RPC Techniques
	Communication Using DCOM Techniques

	Natural Web Interface Modules
	Features
	Calling Natural Subprograms from a Web Page
	Feedback to the User with a Formatted Web Page
	Proven Middleware
	Web Page Creation

	Functionality
	Security

	Natural Web Interface Essentials
	Working with the Natural Web Interface
	Setting up your Environment
	Prerequisites on the Web Environment Side
	Middleware Prerequisites
	Prerequisites on Natural Server Side

	Building Subprograms in Natural
	Before You Write Your Subprograms
	Keep the following things in mind:

	Ways to Create Your Subprograms
	There are two basic alternatives:
	1. Coding In Natural Direct
	2. Using an HTML Editor

	General Programming Considerations
	Constant Values in the Local Data Area W3CONST

	Changing the Amount of Data Transferred
	Testing Subprograms
	The Natural Web Server Extensions
	Parameters
	Initialization File
	Error Logging

	Data Areas
	Naming Conventions of the Library SYSWEB
	Subroutines W3*
	Subroutines H3*
	Subprograms NAT*
	Natural Text Members T3*
	Subprograms E3*
	Members D3* and D4*
	Programs Web*

	Conversion Program: HTML to Natural
	Using the Conversion Program
	Menu
	Toolbar
	Generating a Subprogram/Subroutine to be called direct from the Web

	Inserting a Natural Tag
	Attributes DATA, LDA, GDA, SUB, NOT
	Comment Tag
	ASP-like Script Commands
	Additional Script Directives
	Example 1 of a Simple Generation
	Example 2 of a Simple Generation with a Natural Tag

	Options
	Input/Output Fields

	View
	Input/Output Fields
	Buttons

	Generating a DCOM Class
	Invoking Generate Class
	Input/Output Fields
	Example for Library SYSWEB
	Buttons

	Online Test Utility WEB-ONL
	Prerequisites
	Running the Application
	Supported Content Types
	Menu
	Input/Output Fields
	Buttons

	Programming Tips
	Editing in Lower Case
	Quote v. Apostrophe
	Variables defined by Value
	Access to Resources
	Constant Values
	Creating a New Page
	DCOM / RPC

	Web Interface Administration
	Set the Size of the Return-Page Transport Buffer
	Changing the Transport Send Buffer Width
	Changing the Received Data Buffer Width
	Changing Your Return Page

	Set the Size of the Return Page
	Create a User-Defined Error Page
	Create a User-Defined Error Page XML-Style
	Alphanumeric-to-HTML Conversion
	Alphanumeric-to-URL Conversion

	Demonstration Application - without JavaScript
	Business Requirements
	Design Decisions
	Libraries, Modules and Naming Conventions
	Starting the Demonstration Application
	Starting the Natural Web Interface Online Manual
	Requirements

	Demonstration Application - with JavaScript
	Business Requirements
	Design Decisions
	Starting the Demonstration Application
	Requirements

	Natural Web Interface Error Messages
	Error Messages

	Natural Web Interface Installation
	Configuring the Natural Web Interface
	Supported HTTP Servers
	Configuring RPC and RPC Server
	Natural Version 3.1.5 for Mainframes / Natural Version 4.1.2 for UNIX Server / Natural Version 5.1.1 for Windows
	EntireX / ENTIRE Broker SDK

	Configuring the DCOM Server
	DCOM
	NaturalX Server

	Configuring the Web Interface
	Natural Web Interface
	Natural Web Server Extensions for RPC
	Natural Web Server Extensions for DCOM
	Local DCOM †All Platforms‡
	On Windows NT/Windows 2000 †Apache‡
	On Windows NT/Windows 2000 †Netscape Server‡

	Natural Web Server Extensions for NSAPI
	Using an RPC Server
	Using a DCOM Server

	Configuring an HTTP Server
	Communication with Natural Security
	HTTP Server Security:
	EntireX Security:
	Natural Security:

	Web Interface Troubleshooting
	Natural Web Interface Programming Guide
	Example Programs

	Web Interface Specification
	Demonstration Application
	Main Menu
	Listing
	Browse
	Select
	New
	Show
	Change
	Delete
	Layout

	Web Interface HTML Design
	The Given Layout as HTML Table
	HTML Source of the Table

	Restrictions
	Colors
	HTML 4.0 and Cascading Style Sheets
	Fixed Table Size

	Chosen Layout
	Input Layout
	Functional Parts
	How to Use Frames
	How to Use JavaScript

	Web Interface Program Design
	Data Input
	Global Data
	1. Cookies
	2. Hidden Input Fields and Additional URL Parameters
	3. Data Saved on the Server Side †in a Database‡

	Dispatch
	External Data
	Modular Pages
	Chosen Program Design
	Functional Parts
	Main Programs
	Database Access
	General HTML Layout
	Sub HTML-Pages
	Special Purpose

	Web Interface Implementation
	HTML to Natural
	Reuse of Global Parts
	Use of w3text versus w3html
	Increased Performance using w3text/w3html

	Web Interface Fine Tuning
	Entrance Tunnel

	Natural Web Server Extensions - Overview
	Natural Web Server Extensions - Introduction
	General Information
	Installation - RPC / DCOM
	Transformations
	Variables
	Error Logging and Messages
	Calling Programs

	Natural Web Server Extensions - Initialization File
	General Information
	RPC Parameters
	DCOM Parameters
	Natural Web Server Extension Settings
	HTTP Server Variables
	Additional Variables
	Error Templates
	Default Error Report
	Specifying your own Error Template
	Example of an Error Template

	Natural Web Server Extensions - Error Messages

